Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(23): 16224-16235, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813696

RESUMO

Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOCsub vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOCsub decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOCsub mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was "U"-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOCsub in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOCsub vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOCsub response to climate change.


Assuntos
Carbono , Solo , Mudança Climática , Temperatura
2.
Geoderma ; 348: 1-11, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34795456

RESUMO

In ponderosa pine (Pinus ponderosa) forests of the western United States, prescribed burns are used to reduce fuel loads and restore historical fire regimes. The season of and interval between burns can have complex consequences for the ecosystem, including the production of pyrogenic carbon (PyC). PyC plays a crucial role in soil carbon cycling, displaying turnover times that are orders of magnitude longer than unburned organic matter. This work investigated how the season of and interval between prescribed burns affect soil organic matter, including the formation and retention of PyC, in a ponderosa pine forest of eastern Oregon. In 1997 a prescribed burn study was implemented in Malheur National Forest to examine the ecological effects of burning at 5 and 15-year intervals in either the spring or fall. In October 2015, both O-horizon and mineral soil (0-15 cm) samples were collected and analyzed for PyC concentration, content, and structure using the benzene polycarboxylic acid (BPCA) method. O-horizon depth, carbon and nitrogen concentration and content, pH, and bulk density were also measured. Plots burned in the spring and fall had lower C and N stocks in the O-horizon compared to the unburned controls due to a reduction in O-horizon depth; however, we did not observe any differences in O-horizon concentration of C or N. Moreover, the concentration and stock of C and N in the mineral soil of plots burned in the spring or fall was the same as or only very slightly different from the unburned controls, suggesting that the prescribed burns on these sites have not adversely affected SOM quantity. Compared to unburned controls, we estimate that fall burns increased the mean PyC concentration of the mineral soil by 8.42 g BPCA/kg C. We did not detect a difference in mean PyC concentration of the mineral soil between the spring burns and the unburned controls; however, the spring burn plots did contain a number of isolated pockets with very high concentrations of PyC, suggesting a patchier burn pattern for these plots. In general, there was no detectable difference in any of the response variables when comparing the various prescribed burn treatments to one another. The disturbance caused by the reintroduction of fire to this ecosystem may have obscured subtle differences caused by the different seasons and intervals of burn that could become more apparent over time.

3.
Chembiochem ; 15(11): 1584-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24961930

RESUMO

Oligomers of the Aß42 peptide are significant neurotoxins linked to Alzheimer's disease (AD). Histidine (His) residues present at the N terminus of Aß42 are believed to influence toxicity by either serving as metal-ion binding sites (which promote oligomerization and oxidative damage) or facilitating synaptic binding. Transition metal complexes that bind to these residues and modulate Aß toxicity have emerged as therapeutic candidates. Cobalt(III) Schiff base complexes (Co-sb) were evaluated for their ability to interact with Aß peptides. HPLC-MS, NMR, fluorescence, and DFT studies demonstrated that Co-sb complexes could interact with the His residues in a truncated Aß16 peptide representing the Aß42 N terminus. Coordination of Co-sb complexes altered the structure of Aß42 peptides and promoted the formation of large soluble oligomers. Interestingly, this structural perturbation of Aß correlated to reduced synaptic binding to hippocampal neurons. These results demonstrate the promise of Co-sb complexes in anti-AD therapeutic approaches.


Assuntos
Peptídeos beta-Amiloides/química , Cobalto/química , Histidina/química , Compostos Organometálicos/química , Conformação Molecular , Bases de Schiff/química
5.
Inorg Chem ; 52(21): 12250-61, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-23777423

RESUMO

We report the structural optimization and mechanistic investigation of a series of bioactivated magnetic resonance imaging contrast agents that transform from low relaxivity to high relaxivity in the presence of Zn(II). The change in relaxivity results from a structural transformation of the complex that alters the coordination environment about the Gd(III) center. Here, we have performed a series of systematic modifications to determine the structure that provides the optimal change in relaxivity in response to the presence of Zn(II). Relaxivity measurements in the presence and absence of Zn(II) were used in conjunction with measurements regarding water access (namely, number of water molecules bound) to the Gd(III) center and temperature-dependent (13)C NMR spectroscopy to determine how the coordination environment about the Gd(III) center is affected by the distance between the Zn(II)-binding domain and the Gd(III) chelate, the number of functional groups on the Zn(II)-binding domain, and the presence of Zn(II). The results of this study provide valuable insight into the design principles for future bioactivated magnetic resonance probes.


Assuntos
Meios de Contraste/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Zinco/química , Quelantes/química , Técnicas de Química Sintética , Espectroscopia de Ressonância Magnética/métodos , Relação Estrutura-Atividade , Temperatura
6.
Dalton Trans ; 42(11): 4002-12, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23340849

RESUMO

Cobalt(III) Schiff base complexes, such as [Co(acacen)L(2)](+), inhibit the function of Zn(II)-dependent proteins through dissociative exchange of the axial ligands with key histidine residues of the target protein. Consequently the efficacy of these compounds depends strongly on the lability of the axial ligands. A series of [Co(acacen)L(2)](+) complexes with various axial ligands was investigated using DFT to determine the kinetics and thermodynamics of ligand exchange and hydrolysis. Results showed excellent agreement with experimental data, indicating that axial ligand lability is determined by several factors: pK(a) of the axial ligand, the kinetic barrier to ligand dissociation, and the relative thermodynamic stability of the complexes before and after exchange. Hammett plots were constructed to determine if the kinetics and thermodynamics of exchange can be modulated by the addition of an electron-withdrawing group (EWG) to either the axial ligand itself or to the equatorial acacen ligand. Results predict that addition of an EWG to the axial ligand will shift the kinetics and thermodynamics so as to promote axial ligand exchange, while addition of an EWG to acacen will decrease axial ligand lability. These investigations will aid in the design of the next generation of [Co(acacen)L(2)](2+), allowing researchers to develop new, more effective inhibitors.


Assuntos
Cobalto/química , Cobalto/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Complexos de Coordenação/síntese química , Imidazóis/síntese química , Cinética , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Bases de Schiff/síntese química , Bases de Schiff/química , Bases de Schiff/farmacologia , Relação Estrutura-Atividade , Termodinâmica
7.
Eur J Inorg Chem ; 2012(12): 2099-2107, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23626484

RESUMO

A bacteria-targeted MR contrast agent, Zn-1, consisting of two Zn-dipicolylamine (Zn-dpa) groups conjugated to a GdIII chelate has been synthesized and characterized. In vitro studies with S. aureus and E. coli show that Zn-1 exhibits a significant improvement in bacteria labeling efficiency vs. control. Studies with a structural analogue, Zn-2, indicate that removal of one Zn-dpa moiety dramatically reduces the agent's affinity for bacteria. The ability of Zn-1 to significantly reduce the T1 of labeled vs. unlabeled bacteria, resulting in enhanced MR image contrast, demonstrates its potential for visualizing bacterial infections in vivo.

8.
Inorg Chem ; 48(1): 16-8, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19111064

RESUMO

The synthesis, characterization, and cyclopropanation activity of tetrahedral copper(I) complexes with bipyridine- and phenanthroline-based ligands containing strongly coordinated tetraphenylborate anions are reported. Cu(I)(bpy)(BPh(4)), Cu(I)(phen)(BPh(4)), and Cu(I)(3,4,7,8-Me(4)phen)(BPh(4)) complexes are the first examples in which the BPh(4)(-) counterion chelates a transition metal center in bidentate fashion through eta(2) pi interactions with two of its phenyl rings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...