Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38921454

RESUMO

Drought limits the growth and development of Phaseolus vulgaris L. (known as common bean). Common bean plants contain various phenylpropanoids, but it is not known whether the levels of these metabolites are altered by drought. Here, BT6 and BT44, two white bean recombinant inbred lines (RILs), were cultivated under severe drought. Their respective growth and phenylpropanoid profiles were compared to those of well-irrigated plants. Both RILs accumulated much less biomass in their vegetative parts with severe drought, which was associated with more phaseollin and phaseollinisoflavan in their roots relative to well-irrigated plants. A sustained accumulation of coumestrol was evident in BT44 roots with drought. Transient alterations in the leaf profiles of various phenolic acids occurred in drought-stressed BT6 and BT44 plants, including the respective accumulation of two separate caftaric acid isomers and coutaric acid (isomer 1) relative to well-irrigated plants. A sustained rise in fertaric acid was observed in BT44 with drought stress, whereas the greater amount relative to well-watered plants was transient in BT6. Apart from kaempferol diglucoside (isomer 2), the concentrations of most leaf flavonol glycosides were not altered with drought. Overall, fine tuning of leaf and root phenylpropanoid profiles occurs in white bean plants subjected to severe drought.

2.
Toxins (Basel) ; 16(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535802

RESUMO

DepA, a pyrroloquinoline quinone (PQQ)-dependent enzyme isolated from Devosia mutans 17-2-E-8, exhibits versatility in oxidizing deoxynivalenol (DON) and its derivatives. This study explored DepA's substrate specificity and enzyme kinetics, focusing on DON and 15-acetyl-DON. Besides efficiently oxidizing DON, DepA also transforms 15-acetyl-DON into 15-acetyl-3-keto-DON, as identified via LC-MS/MS and NMR analysis. The kinetic parameters, including the maximum reaction rate, turnover number, and catalytic efficiency, were thoroughly evaluated. DepA-PQQ complex docking was deployed to rationalize the substrate specificity of DepA. This study further delves into the reduced toxicity of the transformation products, as demonstrated via enzyme homology modeling and in silico docking analysis with yeast 80S ribosomes, indicating a potential decrease in toxicity due to lower binding affinity. Utilizing the response surface methodology and central composite rotational design, mathematical models were developed to elucidate the relationship between the enzyme and cofactor concentrations, guiding the future development of detoxification systems for liquid feeds and grain processing. This comprehensive analysis underscores DepA's potential for use in mycotoxin detoxification, offering insights for future applications.


Assuntos
Micotoxinas , Tricotecenos , Especificidade por Substrato , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Molecules ; 27(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235212

RESUMO

Tea is the first most popular beverage worldwide and is available in several selections such as black (fully oxidized), Oolong (partially oxidized) and green (non-oxidized), in addition to purple tea, an emerging variety derived from the same tea plant (Camellia sinensis). This study investigated purple tea leaves (non-oxidized) and flakes (water extractable) to thoroughly identify their composition of anthocyanins and catechins and to study the effect of a water extraction process on their compositional properties in comparison with green tea. Anthocyanin and catechin compounds were separated and quantified using UPLC, and their identity was confirmed using LC-MS/MS in positive and negative ionization modes. Delphinidin was the principal anthocyaninidin in purple tea, while cyanidin came in second. The major anthocyanin pigments in purple tea were delphinidin-coumaroyl-hexoside followed by delphinidin-3-galactoside and cyanidin-coumaroyl-hexoside. The water extraction process resulted in substantial reductions in anthocyanins in purple tea flakes. There were no anthocyanin compounds detected in green tea samples. Both purple and green tea types were rich in catechins, with green tea containing higher concentrations than purple tea. The main catechin in purple or green tea was epigallocatechin gallate (EGCG) followed by either epicatechin gallate (ECG) or epigallocatechin (EGC), subject to tea type. The extraction process increased the concentration of catechins in both purple and green tea flakes. The results suggest that purple tea holds promise in making healthy brews, natural colorants and antioxidants and/or functional ingredients for beverages, cosmetics and healthcare industries due to its high content of anthocyanins and catechins.


Assuntos
Camellia sinensis , Catequina , Antocianinas , Catequina/análise , Cromatografia Líquida , Galactosídeos , Folhas de Planta/química , Espectrometria de Massas em Tandem , Chá , Água
4.
Planta ; 256(2): 36, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35816223

RESUMO

Flavonol rhamnosides including kaempferitrin (i.e., kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside) occur throughout the plant kingdom. Mechanisms governing flavonol rhamnoside biosynthesis are established, whereas degradative processes occurring in plants are relatively unknown. Here, we investigated the catabolic events affecting kaempferitrin status in the rosette leaves of Arabidopsis thaliana L. Heynh. (Arabidopsis) and Raphanus sativus L. (radish), respectively, in response to developmental senescence and postharvest handling. On a per plant basis, losses of several kaempferol rhamnosides including kaempferitrin were apparent in senescing leaves of Arabidopsis during development and postharvest radish stored at 5 °C. Conversely, small pools of kaempferol 7-O-α-rhamnoside (K7R), kaempferol 3-O-α-rhamnoside (K3R), and kaempferol built up in senescing leaves of both species. Evidence is provided for ⍺-rhamnosidase activities targeting the 7-O-α-rhamnoside of kaempferitrin and K7R in rosette leaves of both species. An HPLC analysis of in vitro assays of clarified leaf extracts prepared from developing Arabidopsis and postharvest radish determined that these metabolic shifts were coincident with respective 237% and 645% increases in kaempferitrin 7-O-⍺-rhamnosidase activity. Lower activity rates were apparent when these ⍺-rhamnosidase assays were performed with K7R. A radish ⍺-rhamnosidase containing peak eluting from a DEAE-Sepharose Fast Flow column hydrolyzed various 7-O-rhamnosylated flavonols, as well as kaempferol 3-O-ß-glucoside. Together it is apparent that the catabolism of 7-O-α-rhamnosylated kaempferol metabolites in senescing plant leaves is associated with a flavonol 7-O-α-rhamnoside-utilizing α-rhamnosidase.


Assuntos
Arabidopsis , Raphanus , Arabidopsis/metabolismo , Flavonóis/metabolismo , Quempferóis/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Raphanus/metabolismo
6.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209109

RESUMO

Carotenoids are essential components in the human diet due to their positive functions in ocular and cognitive health. This study investigated composition of carotenoids in hairless canary seed (HCS) as a novel food and the effect of baking on carotenoids in bread and muffin made from HCS, wheat and corn. Three bread formulations made from wheat and HCS blends were evaluated and compared with control wheat bread. In addition, three low-fat muffin recipes prepared from HCS alone or in blends with corn were assessed. The fate of carotenoid compounds in breads and muffins was monitored after dry mixing, dough/batter formation and oven baking. Carotenoids in products were quantified using UPLC and their identification was confirmed based on LC-MS/MS. Hairless canary seed and corn were fairly rich in carotenoids with a total content of 7.6 and 12.9 µg/g, respectively, compared with wheat (1.3 µg/g). Nineteen carotenoid compounds were identified, with all-trans lutein being the principal carotenoid in HCS followed by lutein 3-O-linoleate, lutein 3-O-oleate and lutein di-linoleate. There were significant reductions in carotenoids in muffin and bread products. It appears that batter or dough preparation causes more reductions in carotenoids than oven baking, probably due to enzymatic oxidation and degradation. Muffin-making resulted in lower lutein reductions compared with the bread-making process. The results suggest that muffins made from hairless canary seed alone or in blends with corn could boost the daily intake of lutein and/or zeaxanthin.


Assuntos
Pão/análise , Carotenoides/análise , Análise de Alimentos , Sementes/química , Cromatografia Líquida , Culinária , Qualidade dos Alimentos , Nutrientes/análise , Espectrometria de Massas em Tandem
7.
Metabolites ; 11(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34357327

RESUMO

Xanthomonas axonopodis infects common bean (Phaseolus vulgaris L.) causing the disease common bacterial blight (CBB). The aim of this study was to investigate the molecular and metabolic mechanisms underlying CBB resistance in P. vulgaris. Trifoliate leaves of plants of a CBB-resistant P. vulgaris recombinant inbred line (RIL) and a CBB-susceptible RIL were inoculated with X. axonopodis or water (mock treatment). Leaves sampled at defined intervals over a 48-h post-inoculation (PI) period were monitored for alterations in global transcript profiles. A total of 800 genes were differentially expressed between pathogen and mock treatments across both RILs; approximately half were differentially expressed in the CBB-resistant RIL at 48 h PI. Notably, there was a 4- to 32-fold increased transcript abundance for isoflavone biosynthesis genes, including several isoflavone synthases, isoflavone 2'-hydroxylases and isoflavone reductases. Ultra-high performance liquid chromatography-tandem mass spectrometry assessed leaf metabolite levels as a function of the PI period. The concentrations of the isoflavones daidzein and genistein and related metabolites coumestrol and phaseollinisoflavan were increased in CBB-resistant RIL plant leaves after exposure to the pathogen. Isoflavone pathway transcripts and metabolite profiles were unaffected in the CBB-susceptible RIL. Thus, induction of the isoflavone pathway is associated with CBB-resistance in P. vulgaris.

8.
J Agric Food Chem ; 69(5): 1513-1523, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497227

RESUMO

The bioavailability and anti-inflammatory activity of the phenolic compounds derived from gastrointestinal digestates of navy bean and light red kidney bean milks and yogurts were investigated in both Caco-2 mono- and Caco-2/EA.hy926 co-culture cell models. Instead of being transported directly, the ferulic acid ester derivatives in common bean milks and yogurts were found to be metabolized into ferulic acid and then be transported through the Caco-2 cell monolayer with an average basolateral ferulic acid concentration of 56 ± 3 ng/mL after 2 h. Strong anti-inflammatory effects were observed in the basolateral EA.hy926 cells of the co-culture model, and modulations of oxLDL-induced inflammatory mediators by the transported phenolics were verified to be through the p38 MAPK pathway. The present results suggest that the common bean-derived phenolics can be metabolized and absorbed by the intestinal epithelial cells and have antioxidant and anti-inflammatory effects against oxidative stress injury in vascular endothelial cells, hence contributing to the amelioration of vascular diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Phaseolus/química , Fenóis/farmacologia , Preparações de Plantas/farmacologia , Antioxidantes/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Técnicas de Cultura de Células , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Iogurte
9.
Front Vet Sci ; 7: 150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134328

RESUMO

This study evaluated the performance, gut microbiota, and blood metabolites in broiler chickens fed cranberry and blueberry products for 30 days. A total of 2,800 male day-old broiler Cobb-500 chicks were randomly distributed between 10 diets: control basal diet; basal diet with bacitracin (BACI); four basal diets with 1 and 2% of cranberry (CP1, CP2) and blueberry (BP1, BP2) pomaces; and four basal diets supplemented with ethanolic extracts of cranberry (COH150, COH300) or blueberry (BOH150, BOH300) pomaces. All groups were composed of seven replicates (40 birds per replicate). Cecal and cloacal samples were collected for bacterial counts and 16S rRNA gene sequencing. Blood samples and spleens were analyzed for blood metabolites and gene expressions, respectively. The supplementation of COH300 and BOH300 significantly increased the body weight (BW) during the starting and growing phases, respectively, while COH150 improved (P < 0.05) the overall cumulated feed efficiency (FE) compared to control. The lowest prevalence (P = 0.01) of necrotic enteritis was observed with CP1 and BP1 compared to BACI and control. Cranberry pomace significantly increased the quinic acid level in blood plasma compared to other treatments. At days 21 and 28 of age, the lowest (P < 0.05) levels of triglyceride and alanine aminotransferase were observed in cranberry pomace and blueberry product-fed birds, respectively suggesting that berry feeding influenced the lipid metabolism and serum enzyme levels. The highest relative abundance of Lactobacillaceae was found in ceca of birds fed CP2 (P < 0.05). In the cloaca, BOH300 significantly (P < 0.005) increased the abundances of Acidobacteria and Lactobacillaceae. Actinobacteria showed a significant (P < 0.05) negative correlation with feed intake (FI) and FE in COH300-treated birds, whereas Proteobacteria positively correlated with the BW but negatively correlated with FI and FE, during the growing phase. In the spleen, cranberry products did not induce the release of any pro-inflammatory cytokines but upregulated the expression of several genes (IL4, IL5, CSF2, and HMBS) involved in adaptive immune responses in broilers. This study demonstrated that feed supplementation with berry products could promote the intestinal health by modulating the dynamics of the gut microbiota while influencing the metabolism in broilers.

11.
ACS Omega ; 5(19): 10782-10793, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455198

RESUMO

The mechanisms of cellular absorption and transport underlying the differences between flavonoid aglycones and glycosides and the effect of the structural feature are not well established. In this study, aglycone, mono-, and diglycosides of quercetin and cyanidin were selected to examine the effects of the structural feature on the bioavailability of flavonoids using hexose transporters SGLT1 and GLUT2 in a Caco-2 BBe1 cell model. Cellular uptake and transport of all glycosides were significantly different. The glycosides also significantly inhibited cellular uptake of d-glucose, indicating the involvement of the two hexose transporters SGLT1 and GLUT2 in the absorption, and the potential of the glycosides in lowering the blood glucose level. The in silico prediction model also supported these observations. The absorption of glycosides, especially diglycosides but not the aglycones, was significantly blocked by SGLT1 and GLUT2 inhibitors (phloridzin and phloretin) and further validated in SGLT1 knockdown Caco-2 BBe1 cells.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32240039

RESUMO

The effects of acid soaking as a pre-treatment on the glycoalkaloid and acrylamide levels in raw and cooked potatoes (French fries) were examined. Soaking raw potato cuts in 1.0%, 2.5% or 5.0% acetic acid solutions for at least 8 hours resulted in >90% reduction of α-solanine and α-chaconine in potato samples. Processing of pre-acid soaked potato cuts into French fries resulted in an additional >50% decrease in the glycoalkaloid contents in the samples. Soaking time was found to be a more important factor in reducing glycoalkaloid levels compared to the acid solution concentrations. Over a 95% reduction in acrylamide was also observed in potato cuts pre-soaked in acetic acid before cooking. The reduction in acrylamide formation in the pre-soaked French fry samples was attributed to the lowered pH and the removal of reducing sugars and asparagine in the raw samples prior to cooking. Findings in this study demonstrate that pre-treatment using acid soaking provides a simple and effective way to mitigate glycoalkaloid and acrylamide levels in potatoes.


Assuntos
Ácido Acético/química , Acrilamida/análise , Alcaloides/análise , Análise de Alimentos , Contaminação de Alimentos/análise , Manipulação de Alimentos , Solanum tuberosum/química
13.
Antioxidants (Basel) ; 8(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557846

RESUMO

Red-osier dogwood extracts (RDE) contain high levels of phenolic compounds which have been recognized as natural antioxidants. In this study, the potential of RDE to prevent cardiovascular diseases (CVDs) was evaluated using Caco-2 cells and a co-culture model of Caco-2 BBe1/EA.hy926 cells in Transwell® plates. The results showed that RDE supplementation significantly prevented interleukin-8 (IL-8) production and suppressed the gene expression of IL-8, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and cyclooxygenase 2 (COX-2) in the TNF-α inflamed Caco-2 cells. Meanwhile, the polyphenols (quercetin-3-glucoside, quercetin-glucuronide, rutin, quercetin-3-O-malonylglucoside, and kaempferol-glucoside) in the RDE were validated to be absorbed by Caco-2 BBe1 cells and transported to the basal chamber where EA.hy926 cells were located during 12 h incubation. The transported polyphenols were able to prevent IL-8 production and suppress the gene expression of proinflammatory mediators (TNF-α, ICAM-1, VCAM-1, and COX-2) in the TNF-α or oxidized low-density lipoprotein (ox-LDL) treated EA.hy926 cells. These novel findings demonstrated that phenolic compounds in RDE can be transported to the cardiovascular system by intestinal absorption and mitigate the inflammatory responses of vascular endothelial cells, indicating that RDE could be a natural resource of polyphenols to prevent inflammation cytokine or oxidized lipid-induced CVDs.

14.
J Agric Food Chem ; 67(30): 8370-8381, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31271280

RESUMO

Naturally occurring dietary peptides derived from gastrointestinal digestates of common bean milk and yogurt were studied for their bioaccessibility, bioavailability, and anti-inflammatory activity in both Caco-2 mono- and Caco-2/EA.hy926 co-culture cell models. Anti-inflammatory activities of these peptide extracts were found to be strongly associated with cellular uptake by the intestinal epithelial cells. Mechanisms underlying the cellular uptake were studied by examining the role of peptide transporter 1 and calcium sensing reporter. Three peptides, including γ-glutamyl-S-methylcysteine, γ-glutamyl-leucine, and leucine-leucine-valine, were found to be transported across the Caco-2 cell monolayer and detected by liquid chromatography-tandem mass spectrometry. A strong anti-inflammatory effect was observed in the basolateral EA.hy926 cells (co-culture model), as shown in their inhibition of tumor necrosis factor α-induced pro-inflammatory mediators of the nuclear factor κB and mitogen-activated protein kinase signal cascades. The results suggest that these peptides can be absorbed and possibly have systemic inhibition on inflammatory responses in vascular endothelial cells, indicating potential preventive effects on vascular diseases.


Assuntos
Anti-Inflamatórios/metabolismo , Células Endoteliais/metabolismo , Peptídeos/metabolismo , Phaseolus/química , Extratos Vegetais/metabolismo , Iogurte/análise , Transporte Biológico , Células CACO-2 , Técnicas de Cocultura , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , NF-kappa B/genética , NF-kappa B/metabolismo , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Peptídeos/química , Phaseolus/metabolismo , Extratos Vegetais/química
15.
Anal Chem ; 88(19): 9486-9494, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27605120

RESUMO

Magnetic actuation is a droplet manipulation mechanism in digital microfluidics (DMF), where droplets can be actuated over a (super)hydrophobic surface with a magnetic force. Superparamagnetic particles or ferromagnetic liquids are added to the droplets to provide a "handle" by which the magnet can exert a force on the droplet. In this study, we present a novel method of magnetic manipulation, where droplets instead contain paramagnetic salts with molar magnetic susceptibilities (χm) approximately ≈10 000× < that for superparamagnetic particles. Droplet actuation is facilitated by low surface friction on fluorous silica nanoparticle-based superhydrophobic coatings, where <2 µN is required for reproducible droplet actuation. Different paramagnetic salts with χm from ≈4500 to 72 000 (× 10-6 cm3 mol-1) were used to make aqueous solutions of different concentration and tested for droplet actuation and sliding angle using permanent magnets (1.8-2.1 kG). Paramagnetic salts are compared in terms of solubility, minimum required concentration, and maximum droplet velocity before disengagement. There is a strong correlation between the magnetic susceptibility of the salt solution, its concentration, and ease of actuation. As an application example, droplets containing a paramagnetic salt and doxorubicin (leukemia drug) are magnetically actuated and interrogated using laser-induced fluorescence. Signal attenuation due to the MnCl2 salt was examined, and the Stern-Volmer quenching constant was determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...