Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26719, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434028

RESUMO

There is a general drive to reduce pesticide use owing to the potential negative effects of pesticides on the environment and human health. The EU Commission, for example, through its "Farm to Fork Strategy," has proposed to decrease the use of hazardous chemical pesticides by 50% by 2030. In addition, smallholder farmers in low-income countries do not always follow pesticide safety precautions. This necessitates the introduction of low-risk crop protection strategies also suited for these farmers. Agricultural biologicals can substitute for, or at least partially replace hazardous chemical pesticides. While the market for and use of biologicals is growing quickly in industrialized countries, this practice remains limited in sub-Saharan Africa. To understand the reason behind the low adoption of biologicals, this study examined the knowledge, attitudes, and practices toward biologicals among 150 smallholder farmers in the Chole district in Ethiopia. All farmers used chemical pesticides and/or inorganic fertilizers to protect crops, improve yields, and comply with government regulations. The use of biologicals was, however, restricted to one group of biologicals, bio-fertilizers, which approximately 60% of farmers used, and no use of biologicals for plant protection was reported. Even though the understanding of the concept of biologicals was deemed high among respondents, the majority (90%) did not identify biologicals as safer alternatives to conventional agricultural inputs. More than half of the respondents (54%) did not recommend biologicals as safer alternatives to their colleagues. Nevertheless, even if the responding farmers did not perceive biologicals as risk-free, they had a positive attitude towards biologicals when it came to producing healthy food and increasing crop yields and incomes. In comparison to the positive attitude, farmers' knowledge and practice of biologicals were generally low; thus, efforts are needed to create awareness among farmers.

2.
Funct Plant Biol ; 46(12): 1114-1122, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31679560

RESUMO

Chilli pepper (Capsicum annuum L.) is susceptible to Pectobacterium carotovorum subsp. carotovorum (Pcc), the causal agent of soft rot disease in crops. Understanding the molecular principles of systemic acquired resistance, which is poorly understood in chilli pepper, represents an important step towards understanding inducible defence responses and can assist in designing appropriate intervention strategies for crop disease management. Accordingly, we investigated (via real-time PCR and metabolomics profiling) the molecular response of chilli pepper to Pcc by characterisation of the crucial metabolic regulators involved in the establishment of defence response. We profiled 13 key inducible defence response genes, which included MYB transcriptor factor, ethylene response element-binding protein, suppressor of the G2 allele of Skp1, cytochrome P450, small Sar1 (GTPase), hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase, pathogenesis-related protein 1a, endo-1,3-ß-glucanase, chitinase, proteinase inhibitor, defensin, coiled-coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) resistance and phenylalanine ammonia lyase. In addition, we determined metabolomic shifts induced by Pcc in pepper. The PCR results revealed a significant induction of the selected plant defence-related genes in response to Pcc inoculation; the metabolomic profiling showed that of 99 primary metabolites profiled the quantities of acetylcarnitine, adenosine, adenosine 3',5' cyclic monophosphate, guanosine 3',5' cyclic monophosphate and inosine decreased in pepper leaves inoculated with Pcc.


Assuntos
Capsicum , Pectobacterium carotovorum , Expressão Gênica , Doenças das Plantas , Folhas de Planta
3.
Microbiologyopen ; 8(12): e911, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31536683

RESUMO

Defense responses of tomato (Solanum lycopersicum L.) against attack by Pectobacterium carotovorum subsp. carotovorum (Pcc), the causal agent of soft rot diseases, were studied. The expression of some tomato defense genes were evaluated by real-time PCR quantification analysis, 24 and 72 hr after actively growing tomato plants were inoculated with Pcc. These included: MYB transcriptor factor, ethylene response element-binding protein, suppressor of the G2 allele of Skp1, cytochrome P450, small Sar1 GTPase, hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase, pathogenesis-related protein 1a, endo-1,3-beta-glucanase, chitinase, proteinase inhibitor, defensin, CC-NBS-LRR resistance protein, and phenylalanine ammonia lyase. The results showed dynamic transcriptomic changes, with transcripts exhibiting different expression kinetics at 24 and 72 hr to confer resistance to tomato against Pcc infection.


Assuntos
Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Pectobacterium carotovorum , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Perfilação da Expressão Gênica , Transcriptoma
4.
BMC Res Notes ; 8: 76, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25889420

RESUMO

BACKGROUND: The Malus domestica polygalacturonase inhibiting protein 1 (MdPGIP1) gene, encoding the M. domestica polygalacturonase inhibiting protein 1 (MdPGIP1), was isolated from the Granny Smith apple cultivar (GenBank accession no. DQ185063). The gene was used to transform tobacco and potato for enhanced resistance against fungal diseases. FINDINGS: Analysis of the MdPGIP1 nucleotide sequence revealed that the gene comprises 993 nucleotides that encode a 330 amino acid polypeptide. In silico characterization of the MdPGIP1 polypeptide revealed domains typical of PGIP proteins, which include a 24 amino acid putative signal peptide, a potential cleavage site [Alanine-Leucine-Serine (ALS)] for the signal peptide, a 238 amino acid leucine-rich repeat (LRR) domain, a 46 amino acid N-terminal domain and a 22 amino acid C-terminal domain. The hydropathic evaluation of MdPGIP1 indicated a repetitive hydrophobic motif in the LRR domain and a hydrophilic surface area consistent with a globular protein. The typical consensus glycosylation sequence of Asn-X-Ser/Thr was identified in MdPGIP1, indicating potential N-linked glycosylation of MdPGIP1. The molecular mass of non-glycosylated MdPGIP1 was calculated as 36.615 kDa and the theoretical isoelectric point as 6.98. Furthermore, the secondary and tertiary structure of MdPGIP1 was modelled, and revealed that MdPGIP1 is a curved and elongated molecule that contains sheet B1, sheet B2 and 310-helices on its LRR domain. CONCLUSION: The overall properties of the MdPGIP1 protein is similar to that of the prototypical Phaseolus vulgaris PGIP 2 (PvPGIP2), and the detected differences supported its use in biotechnological applications as an inhibitor of targeted fungal polygalacturonases (PGs).


Assuntos
Malus/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...