Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 367, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760795

RESUMO

The data set presented represents 15 years of collection. It contains tree-ring width measurements from 64 sites of living trees and ten historical chronologies based on archaeological and construction wood up to year 572 CE, altogether 2909 tree-ring series and more than 450000 measured and cross-dated tree rings. It covers the vast territory of European Russia, including its forested northern and central parts, and the Northern Caucasus mountains. The potential use of these data include climatic reconstructions of regional and hemispheric scale, dendrochronological dating of historical and cultural wood, ecological and remote sensing studies.

2.
Clim Dyn ; 56(11-12): 3817-3833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776646

RESUMO

Holocene climate variability is punctuated by episodic climatic events such as the Little Ice Age (LIA) predating the industrial-era warming. Their dating and forcing mechanisms have however remained controversial. Even more crucially, it is uncertain whether earlier events represent climatic regimes similar to the LIA. Here we produce and analyse a new 7500-year long palaeoclimate record tailored to detect LIA-like climatic regimes from northern European tree-ring data. In addition to the actual LIA, we identify LIA-like ca. 100-800 year periods with cold temperatures combined with clear sky conditions from 540 CE, 1670 BCE, 3240 BCE and 5450 BCE onwards, these LIA-like regimes covering 20% of the study period. Consistent with climate modelling, the LIA-like regimes originate from a coupled atmosphere-ocean-sea ice North Atlantic-Arctic system and were amplified by volcanic activity (multiple eruptions closely spaced in time), tree-ring evidence pointing to similarly enhanced LIA-like regimes starting after the eruptions recorded in 1627 BCE, 536/540 CE and 1809/1815 CE. Conversely, the ongoing decline in Arctic sea-ice extent is mirrored in our data which shows reversal of the LIA-like conditions since the late nineteenth century, our record also correlating highly with the instrumentally recorded Northern Hemisphere and global temperatures over the same period. Our results bridge the gaps between low- and high-resolution, precisely dated proxies and demonstrate the efficacy of slow and fast components of the climate system to generate LIA-like climate regimes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00382-021-05669-0.

3.
Proc Natl Acad Sci U S A ; 117(29): 16816-16823, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632003

RESUMO

South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia-New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño-Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions.


Assuntos
Clima , Aquecimento Global , Árvores/crescimento & desenvolvimento , Secas , Mapeamento Geográfico , Modelos Estatísticos , Chuva , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...