Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365227

RESUMO

Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control.


Assuntos
Bacteriófagos , Vitis , Tumores de Planta/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa , Bacteriófagos/genética , Vitis/microbiologia
2.
mSphere ; 8(6): e0040323, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38009997

RESUMO

IMPORTANCE: Helicobacter species are classified as gastric or enterohepatic according to their habitat. Among enterohepatic Helicobacter species, which inhabit the intestine, colon, and liver, Helicobacter cinaedi has been most frequently isolated from humans. H. cinaedi often causes bacteremia and cellulitis in immunocompromised hosts. Here, we focused on the H. cinaedi autotransporter protein A (HcaA), a novel virulence factor in H. cinaedi. We discovered that HcaA contributes to cell adhesion via its Arg-Gly-Asp motif. Furthermore, in animal experiments, bacterial colonization was reduced in mice infected with HcaA-knockout strains, supporting the hypothesis that HcaA contributes to H. cinaedi adhesion to host cells. Our study provides a novel mechanism for the establishment of H. cinaedi infections and provides new insights into the role of autotransporter proteins in the establishment of Helicobacter infection.


Assuntos
Adesão Celular , Infecções por Helicobacter , Helicobacter , Sistemas de Secreção Tipo V , Animais , Humanos , Camundongos , Helicobacter/genética , Infecções por Helicobacter/microbiologia , Proteína Estafilocócica A
3.
STAR Protoc ; 4(4): 102556, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756155

RESUMO

Infection with Helicobacter suis, which causes many cases of gastric disease, is not reliably diagnosed. Here, we present a protocol for detecting H. suis infection. We describe steps for collecting gastric biopsies and sera from patients, preparing DNA for PCR, and targeting the H. suis-specific gene. We then define procedures for inoculating biopsies onto primary agar plates and transferring colonies to secondary agar plates. Finally, we detail whole-genome sequencing of bacteria and assess H. suis infection in sera with ELISA. For complete details on the use and execution of these protocols, please refer to Matsui et al.1.


Assuntos
Helicobacter heilmannii , Humanos , Helicobacter heilmannii/genética , Ágar , Biópsia , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase
4.
Curr Biol ; 33(17): 3732-3746.e8, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37619565

RESUMO

Pattern-recognition receptor (PRR)-triggered immunity (PTI) wards off a wide range of pathogenic microbes, playing a pivotal role in angiosperms. The model liverwort Marchantia polymorpha triggers defense-related gene expression upon sensing components of bacterial and fungal extracts, suggesting the existence of PTI in this plant model. However, the molecular components of the putative PTI in M. polymorpha and the significance of PTI in bryophytes have not yet been described. We here show that M. polymorpha has four lysin motif (LysM)-domain-containing receptor homologs, two of which, LysM-receptor-like kinase (LYK) MpLYK1 and LYK-related (LYR) MpLYR, are responsible for sensing chitin and peptidoglycan fragments, triggering a series of characteristic immune responses. Comprehensive phosphoproteomic analysis of M. polymorpha in response to chitin treatment identified regulatory proteins that potentially shape LysM-mediated PTI. The identified proteins included homologs of well-described PTI components in angiosperms as well as proteins whose roles in PTI are not yet determined, including the blue-light receptor phototropin MpPHOT. We revealed that MpPHOT is required for negative feedback of defense-related gene expression during PTI. Taken together, this study outlines the basic framework of LysM-mediated PTI in M. polymorpha and highlights conserved elements and new aspects of pattern-triggered immunity in land plants.


Assuntos
Embriófitas , Magnoliopsida , Marchantia , Quitina , Reconhecimento da Imunidade Inata , Marchantia/genética , Lisina/química , Lisina/genética
5.
iScience ; 26(4): 106522, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123222

RESUMO

Helicobacter suis, hosted by hogs, is the most prevalent gastric non-Helicobacter pylori Helicobacter species found in humans. Recent studies have suggested that H. suis infection has caused many cases of gastric disease, but the transmission route from hogs remains unclear. Diagnostic methods based on H. suis urease activity often yield negative results, and there is no reliable method for diagnosing H. suis infection in clinical practice without gastric biopsy specimens. This study presents the world's first use of whole-bacterial cell ELISA to simultaneously assess H. suis and H. pylori infections. The ELISAs showed high accuracy, with an area under the ROC curve of 0.96, 100% sensitivity, 92.6% specificity, 76.9% positive predictive value, and 100% negative predictive value for the H. suis test, and an area under the ROC curve of 0.92, 88.2% sensitivity, 87.5% specificity, 65.2% positive predictive value, and 96.6% negative predictive value for the H. pylori test.

6.
J Virol ; 97(6): e0022123, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199623

RESUMO

Plant viruses depend on a number of host factors for successful infection. Deficiency of critical host factors confers recessively inherited viral resistance in plants. For example, loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. However, the molecular mechanism of how EXA1 assists potexvirus infection remains largely unknown. Previous studies reported that the salicylic acid (SA) pathway is upregulated in exa1 mutants, and EXA1 modulates hypersensitive response-related cell death during EDS1-dependent effector-triggered immunity. Here, we show that exa1-mediated viral resistance is mostly independent of SA and EDS1 pathways. We demonstrate that Arabidopsis EXA1 interacts with three members of the eukaryotic translation initiation factor 4E (eIF4E) family, eIF4E1, eIFiso4E, and novel cap-binding protein (nCBP), through the eIF4E-binding motif (4EBM). Expression of EXA1 in exa1 mutants restored infection by the potexvirus Plantago asiatica mosaic virus (PlAMV), but EXA1 with mutations in 4EBM only partially restored infection. In virus inoculation experiments using Arabidopsis knockout mutants, EXA1 promoted PlAMV infection in concert with nCBP, but the functions of eIFiso4E and nCBP in promoting PlAMV infection were redundant. By contrast, the promotion of PlAMV infection by eIF4E1 was, at least partially, EXA1 independent. Taken together, our results imply that the interaction of EXA1-eIF4E family members is essential for efficient PlAMV multiplication, although specific roles of three eIF4E family members in PlAMV infection differ. IMPORTANCE The genus Potexvirus comprises a group of plant RNA viruses, including viruses that cause serious damage to agricultural crops. We previously showed that loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. EXA1 may thus play a critical role in the success of potexvirus infection; hence, elucidation of its mechanism of action is crucial for understanding the infection process of potexviruses and for effective viral control. Previous studies reported that loss of EXA1 enhances plant immune responses, but our results indicate that this is not the primary mechanism of exa1-mediated viral resistance. Here, we show that Arabidopsis EXA1 assists infection by the potexvirus Plantago asiatica mosaic virus (PlAMV) by interacting with the eukaryotic translation initiation factor 4E family. Our results imply that EXA1 contributes to PlAMV multiplication by regulating translation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fator de Iniciação 4E em Eucariotos , Doenças das Plantas , Potexvirus , Arabidopsis/metabolismo , Arabidopsis/virologia , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Doenças das Plantas/genética , Potexvirus/fisiologia , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Ligação Proteica , Motivos de Aminoácidos , Deleção de Genes , Células Vegetais/virologia , Biossíntese de Proteínas/genética
7.
Emerg Infect Dis ; 29(4): 833-835, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958030

RESUMO

We report the isolation of Helicobacter ailurogastricus, a Helicobacter species that infects cats and dogs, from a person with multiple refractory gastric ulcers. In addition to H. suis, which infects pigs, Helicobacter species that infect cats and dogs should be considered as potential gastric pathogens in humans.


Assuntos
Infecções por Helicobacter , Helicobacter heilmannii , Helicobacter , Úlcera Gástrica , Humanos , Animais , Gatos , Cães , Suínos , Úlcera Gástrica/diagnóstico , Japão , Helicobacter heilmannii/genética , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/veterinária , Helicobacter/genética
8.
Front Plant Sci ; 13: 1004184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186055

RESUMO

Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction.

9.
Front Pharmacol ; 13: 692437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935877

RESUMO

We investigated the effect of increased pH induced by acid suppressants on the viability of non-Helicobacter pylori helicobacters (NHPHs) within parietal cell intracellular canaliculi and fundic glandular lumina by immunohistochemistry, electron microscopy, quantitative PCR, urea breath tests, and using a bilayer culture system. Three months before the experiment, mice were infected with the NHPH H. suis and then treated with famotidine (2 mg/kg body weight [BW], once daily), lansoprazole (30 mg/kg BW, once daily), or vonoprazan (20 mg/kg BW, once daily) for 3 days. Immunohistochemical studies using the TUNEL method, quantitative PCR analysis, and urea breath tests were performed. PCR analysis showed a decrease in the NHPH quantity after vonoprazan treatment. Urea breath tests revealed a significant decrease in the NHPH urease activity after vonoprazan, lansoprazole, and famotidine treatments for 3 days; however, 4 days after the treatment, urease activity reversed to the pretreatment level for each treatment group. Electron microscopy revealed an increase in the damaged NHPH after vonoprazan treatment. The TUNEL method revealed apoptotic NHPH within parietal cells after vonoprazan treatment. The bilayer culture results demonstrated that NHPH moved more quickly at a pH of 4.0 than at a pH of 3.0, 5.0, and 6.5, and electron microscopy revealed a change from the spiral form to the coccoid form under near-neutral pH conditions. We thus proposed that acid suppressants, especially vonoprazan, induce NHPH damage by altering pH.

10.
Mol Plant Pathol ; 23(6): 885-894, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35233886

RESUMO

Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host__s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta ∆hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta ∆hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509.


Assuntos
Nicotiana , Incêndios Florestais , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas , Pseudomonas syringae , Nicotiana/microbiologia
11.
Sci Rep ; 12(1): 4811, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314746

RESUMO

Genetic analysis and culturing techniques for gastric non-Helicobacter pylori Helicobacter (NHPH) are progressing. NHPH is reported to accompany nodular gastritis, gastric MALT lymphoma, and mild gastritis. However, only a few gastric cancer cases infected by NHPH have been reported. PCR analysis specific for NHPH and H. pylori was performed for DNA from gastric mucosa of 282 Korean gastric cancer patients, who were treated with endoscopic submucosal dissection. For more precise strain detection of NHPH, NHPH-positive mucosa was stained by immunohistochemistry specific for Helicobacter suis. The Cancer Genome Atlas (TCGA) classification was analyzed for these 3 gastric cancer sub-groups by in situ hybridization and immunohistochemistry. Among 281 patients, 3 patients (1.1%) were positive for NHPH. One patient (Patient 1) was also positive for H. pylori by PCR, another patient (Patient 3) was positive for serum IgG for H. pylori, and the other patient (Patient 2) had no evidence for H. pylori infection. Gastric mucosa of Patients 2 and 3 were positive for H. suis staining. All three NHPH-positive gastric cancers were located in the antrum, and belonged to the Chromosomal Instability Type of TCGA classification. Gastric NHPH can be a cause of gastric cancer, although likely with lower pathogenesis than H. pylori.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Mucosa Gástrica/patologia , Gastrite/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Humanos , Neoplasias Gástricas/patologia
12.
Microbes Environ ; 37(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264479

RESUMO

Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a foliar plant pathogen that causes wildfire disease on tobacco plants. It requires chemotaxis to enter plants and establish infection. While chemotactic signals appear to be the main mechanism by which Pta6605 performs directional movement, the involvement of aerotaxis or energy taxis by this foliar pathogen is currently unknown. Based on domain structures and similarity with more than 50 previously identified putative methyl-accepting chemotaxis proteins (MCPs), the genome of Pta6605 encodes three potential aerotaxis transducers. We identified AerA as the main aerotaxis transducer and found that it possesses a taxis-to-serine-and-repellent (Tsr)-like domain structure that supports a periplasmic 4HB-type ligand-binding domain (LBD). The secondary aerotaxis transducer, AerB, possesses a cytosolic PAS-type LBD, similar to the Aer of Escherichia coli and Pseudomonas aeruginosa. Aerotaxis ability by single and double mutant strains of aerA and aerB was weaker than that by wild-type Pta6605. On the other hand, another cytosolic PAS-type LBD containing MCP did not make a major contribution to Pta6605 aerotaxis in our assay system. Furthermore, mutations in aerotaxis transducer genes did not affect surface motility or chemotactic attraction to yeast extract. Single and double mutant strains of aerA and aerB showed less colonization in the early stage of host plant infection and lower biofilm production than wild-type Pta6605. These results demonstrate the presence of aerotaxis transducers and their contribution to host plant infection by Pta6605.


Assuntos
Quimiotaxia , Pseudomonas syringae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia/genética , Escherichia coli/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Doenças das Plantas , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Nicotiana
13.
Life (Basel) ; 12(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054469

RESUMO

Rhizoctonia solani is a necrotrophic plant pathogen with a wide host range. R. solani is a species complex consisting of thirteen anastomosis groups (AGs) defined by compatibility of hyphal fusion reaction and subgroups based on cultural morphology. The relationship between such classifications and host specificity remains elusive. Here, we investigated the pathogenicity of seventeen R. solani isolates (AG-1 to 7) in Japan towards Arabidopsis thaliana using leaf and soil inoculations. The tested AGs, except AG-3 and AG-6, induced symptoms in both methods with variations in pathogenicity. The virulence levels differed even within the same AG and subgroup. Some isolates showed tissue-specific infection behavior. Thus, the AGs and their subgroups are suggested to be not enough to define the virulence (host and tissue specificity) of R. solani. We also evaluated the virulence of the isolates on Arabidopsis plants pretreated with salicylic acid, jasmonic acid, and ethylene. No obvious effects were detected on the symptom formation by the virulence isolates, but ethylene and salicylic acid slightly enhanced the susceptibility to the weak and nonvirulent isolates. R. solani seems to be able to overcome the induced defense by these phytohormones in the infection to Arabidopsis.

14.
Plant Pathol J ; 37(6): 566-579, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34897249

RESUMO

Ralstonia syzygii subsp. indonesiensis (Rsi, former name: Ralstonia solanacearum phylotype IV) PW1001, a causal agent of potato wilt disease, induces hypersensitive response (HR) on its non-host eggplant (Solanum melongena cv. Senryo-nigou). The disaccharide trehalose is involved in abiotic and biotic stress tolerance in many organisms. We found that trehalose is required for eliciting HR on eggplant by plant pathogen Rsi PW1001. In R. solanacearum, it is known that the OtsA/OtsB pathway is the dominant trehalose synthesis pathway, and otsA and otsB encode trehalose-6-phosphate (T6P) synthase and T6P phosphatase, respectively. We generated otsA and otsB mutant strains and found that these mutant strains reduced the bacterial trehalose concentration and HR induction on eggplant leaves compared to wild-type. Trehalose functions intracellularly in Rsi PW1001 because addition of exogenous trehalose did not affect the HR level and ion leakage. Requirement of trehalose in HR induction is not common in R. solanacearum species complex because mutation of otsA in Ralstonia pseudosolanacearum (former name: Ralstonia solanacearum phylotype I) RS1002 did not affect HR on the leaves of its non-host tobacco and wild eggplant Solanum torvum. Further, we also found that each otsA and otsB mutant had reduced ability to grow in a medium containing NaCl and sucrose, indicating that trehalose also has an important role in osmotic stress tolerance.

15.
Microbiol Res ; 253: 126869, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34597823

RESUMO

Chemotaxis is crucial for Pseudomonas syringae pv. tabaci (Pta) 6605 to evoke disease in tobacco plants. Pta6605 harbors more than fifty genes for methyl-accepting chemotaxis proteins (mcp), but almost all are functionally uncharacterized. Previously we identified a dCache_1 type MCP in Pta6605 that mediates chemotaxis to γ-aminobutyric acid, called McpG. In this study, we characterized four more dCache_1 type MCPs, three of which, PscA, PscB, and PscC2, are responsible for sensing amino acids. Using a capillary chemotaxis assay, we observed that PscA, PscB, and PscC2 mutant strains had reduced chemotaxis to most amino acids, indicating that PscA and PscB mediate chemotaxis to 14 amino acids, while PscC2 has a slightly narrower ligand recognition, mediating chemotaxis to 12 amino acids. Other cellular functions were also affected in ΔpscB and ΔpscC2: swarming motility was reduced, and biofilm formation was increased. Furthermore, ΔpscB and ΔpscC2 but not ΔpscA had reduced virulence in the host tobacco plant. On the other hand, ΔpscC1 was defective in motility and did not even respond to yeast extract and was unable to cause disease. These findings supported the idea that the chemosensory pathway correlated with virulence-related phenotypes. Amino acids are abundant in tobacco apoplast; having multiple MCPs appears to support the invasion of Pta6605 into the plant.


Assuntos
Aminoácidos , Proteínas de Bactérias , Interações entre Hospedeiro e Microrganismos , Pseudomonas syringae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Nicotiana/microbiologia
16.
Microbiol Resour Announc ; 10(28): e0040521, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264094

RESUMO

Pseudomonas amygdali pv. tabaci strain 6605 is the bacterial pathogen causing tobacco wildfire disease that has been used as a model for elucidating virulence mechanisms. Here, we present the complete genome sequence of P. amygdali pv. tabaci 6605 as a circular chromosome from reads using a PacBio sequencer.

17.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753513

RESUMO

Helicobacter suis, a bacterial species naturally hosted by pigs, can colonize the human stomach in the context of gastric diseases such as gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Because H. suis has been successfully isolated from pigs, but not from humans, evidence linking human H. suis infection to gastric diseases has remained incomplete. In this study, we successfully in vitro cultured H. suis directly from human stomachs. Unlike Helicobacter pylori, the viability of H. suis decreases significantly on neutral pH; therefore, we achieved this using a low-pH medium for transport of gastric biopsies. Ultimately, we isolated H. suis from three patients with gastric diseases, including gastric MALT lymphoma. Successful eradication of H. suis yielded significant improvements in endoscopic and histopathological findings. Oral infection of mice with H. suis clinical isolates elicited gastric and systemic inflammatory responses; in addition, progression of gastric mucosal metaplasia was observed 4 mo postinfection. Because H. suis could be isolated from the stomachs of infected mice, our findings satisfied Koch's postulates. Although further prospective clinical studies are needed, H. suis, like H. pylori, is likely a gastric pathogen in humans. Furthermore, comparative genomic analysis of H. suis using complete genomes of clinical isolates revealed that the genome of each H. suis isolate contained highly plastic genomic regions encoding putative strain-specific virulence factors, including type IV secretion system-associated genes, and that H. suis isolates from humans and pigs were genetically very similar, suggesting possible pig-to-human transmission.


Assuntos
Infecções por Helicobacter/genética , Helicobacter heilmannii/genética , Helicobacter heilmannii/patogenicidade , Gastropatias/microbiologia , Estômago/microbiologia , Fatores de Virulência/genética , Adulto , Animais , Modelos Animais de Doenças , Feminino , Genoma Bacteriano , Helicobacter heilmannii/isolamento & purificação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Suínos , Sistemas de Secreção Tipo IV/genética , Virulência/genética
18.
Biochem Biophys Rep ; 26: 100944, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33659714

RESUMO

Virulence factor regulator (Vfr) is an indispensable transcription factor in the expression of virulence in the phytopathogenic bacteria Pseudomonas syringae. However, the function of Vfr is not known so far. The deletion of vfr resulted in the loss of surface swarming motility and reduced the virulence in P. syringae pv. tabaci (Pta) 6605. In order to identify the target genes of Vfr, we screened the sequences that bind to Vfr by chromatin immune precipitation (ChIP) and sequencing methods using the closely related bacterium P. syringae pv. syringae (Pss) B728a. For this purpose we first generated a strain that possesses the recombinant gene vfr::FLAG in Pss B728a, and performed ChIP using an anti-FLAG antibody. Immunoprecipitated DNA was purified and sequenced with Illumina HiSeq. The Vfr::FLAG-specific peaks were further subjected to an electrophoresis mobility-shift assay, and the promoter regions of locus tag for Psyr_0578 , Psyr_1776, and Psyr_2237 were identified as putative target genes of Vfr. These genes encode plant pathogen-specific methyl-accepting chemotaxis proteins (Mcp). These mcp genes seem to be involved in the Vfr-regulated expression of virulence.

19.
Mol Genet Genomics ; 296(2): 299-312, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386986

RESUMO

Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants and is highly motile. Pta6605 has multiple clusters of chemotaxis genes including cheA, a gene encoding a histidine kinase, cheY, a gene encoding a response regulator, mcp, a gene for a methyl-accepting chemotaxis protein, as well as flagellar and pili biogenesis genes. However, only two major chemotaxis gene clusters, cluster I and cluster II, possess cheA and cheY. Deletion mutants of cheA or cheY were constructed to evaluate their possible role in Pta6605 chemotaxis and virulence. Motility tests and a chemotaxis assay to known attractant demonstrated that cheA2 and cheY2 mutants were unable to swarm and to perform chemotaxis, whereas cheA1 and cheY1 mutants retained chemotaxis ability almost equal to that of the wild-type (WT) strain. Although WT and cheY1 mutants of Pta6605 caused severe disease symptoms on host tobacco leaves, the cheA2 and cheY2 mutants did not, and symptom development with cheA1 depended on the inoculation method. These results indicate that chemotaxis genes located in cluster II are required for optimal chemotaxis and host plant infection by Pta6605 and that cluster I may partially contribute to these phenotypes.


Assuntos
Histidina Quinase/genética , Proteínas Quimiotáticas Aceptoras de Metil/genética , Nicotiana/microbiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas syringae/fisiologia , Quimiotaxia , Resistência à Doença , Deleção de Genes , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas syringae/patogenicidade , Virulência
20.
J Infect Chemother ; 27(4): 578-584, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33309630

RESUMO

INTRODUCTION: Mucoid (MTB313) and nonmucoid (MTB314) strains of group A streptococcus (GAS) emm (antiphagocytic M protein) type 1 were simultaneously isolated from a single patient suffering from streptococcal meningitis. In a CD46-expressing transgenic (CD46 Tg) mouse model of subcutaneous infection into both hind footpads with MTB313 or MTB314, MTB313 showed considerably higher virulence than MTB314. METHODS: The comparative genomic analysis based on the whole-genome sequencing revealed that MTB313 possessed an amber codon within rocA (sensory transduction protein kinase), but MTB314 did not carry this stop codon. Thereafter, MAT101 was generated from MTB313 by introducing pRocA, which contained the full-length rocA from MTB314, into the cloning plasmid pLZ12-Km2. MAT100 was also generated by introducing pLZ12-Km2 into MTB313. RESULTS: Although MTB313 and MAT100 showed large quantities of cell-associated hyaluronic acid (HA) in the culture pellets, MTB314 and MAT101 showed small quantities of HA production. Finally, higher mortalities were observed in the MTB313- or MAT100-infected CD46 Tg mice than the MTB314- or MAT101-infected CD46 Tg mice. CONCLUSIONS: These data indicate the possibility that a spontaneous point mutation in the rocA gene led to the highly virulent phenotype of M1 GAS.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Transativadores/genética , Animais , Proteínas de Bactérias/genética , Humanos , Camundongos , Fenótipo , Mutação Puntual , Streptococcus pyogenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...