Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Glycosci (1999) ; 69(4): 73-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531691

RESUMO

This study aimed to characterize the interactions between cereal flour (rice, wheat, and barley) and "nata puree" (NP), a disintegrated bacterial cellulose (BC) in the presence of a water-soluble polysaccharide, with powder-dispersion activity. Pasting properties of cereal flour with additives were analyzed using a Rapid Visco Analyzer, and disintegrated BC in water (BCW), three water-soluble polysaccharides: (1,3)(1,4)-ß-glucan, tamarind seed gum, and birchwood xylan, and the corresponding NPs were used as additives. For rice flour, additional BCW or NPs increased the initial and the peak viscosity. The addition of water-soluble polysaccharides produced the opposite trend: viscosity increased from the peak time to the end of measurements. For wheat flour, the addition of BCW or NP delayed the peak time and increased peak viscosity; the increase was maintained till the end of measurements. For barley flour, the additional BCW or NP caused a higher gelatinization rate and increased viscosity at the starch-retrogradation stage. Next, static gelatinization of a rice flour suspension in NP was successfully accomplished before placing it in a vessel; NP concentration in the gel significantly affected the firmness. Thus, the dynamic and unique interactions between various cereal flours and cell-wall polysaccharides in NPs can increase the flours' potential; static gelatinization of cereal flour with NP could expand flours' application range in both current and next-generation cooking.

2.
Plant Mol Biol ; 108(4-5): 481-496, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35099666

RESUMO

KEY MESSAGE: BEIIb plays a specific role in determining the structure of amylopectin in rice endosperm, whereas BEIIa plays the similar role in the culm where BEIIb is absent. Cereals have three types of starch branching enzymes (BEs), BEI, BEIIa, and BEIIb. It is widely known that BEIIb is specifically expressed in the endosperm and plays a distinct role in the structure of amylopectin because in its absence the amylopectin type changes to the amylose-extender-type (ae-type) or B-type from the wild-type or A-type and this causes the starch crystalline allomorph to the B-type from the wild-type A-type. This study aimed to clarify the role of BEIIa in the culm where BEIIb is not expressed, by using a be2a mutant in comparison with results with be2b and be1 mutants. The results showed that the amylopectin structure exhibited the B-type in the be2a culm compared with the A-type in the wild-type culm. The starch granules from the be2a culm also showed the B-type like allomorph when examined by X-ray diffraction analysis and optical sum frequency generation spectroscopy. Both amylopectin chain-length profile and starch crystalline properties were found to be the A-type at the very early stage of endosperm development at 4-6 days after pollination (DAP) even in the be2b mutant. All these results support a view that in the culm as well as in the endosperm at 4-6 DAP, BEIIa can play the role of BEIIb which has been well documented in maturing endosperm. The possible mechanism as to how BEIIa can play its role is discussed.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilopectina/química , Amilopectina/metabolismo , Endosperma/metabolismo , Oryza/enzimologia , Amido/metabolismo , Configuração de Carboidratos , Eletroforese em Gel de Poliacrilamida , Imageamento por Ressonância Magnética , Mutação , Oryza/metabolismo , Conformação Proteica , Análise Espectral , Amido/química , Difração de Raios X
3.
J Appl Glycosci (1999) ; 68(4): 77-87, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853549

RESUMO

Pulverization is a potentially powerful solution for the resource management of surplus- and non-standard agricultural products, maintaining their nutritional values for long and ensuring their homogeneity, whereas their original textures could disappear to narrow the application ranges. Therefore, new technologies should be developed for reconstructing the powders to provide them with new physical characteristics. Herein, we developed a novel food material, nata puree (NP), by nata de coco (bacterial cellulose gel) disintegration with a water-soluble polysaccharide using a household blender. The process worked well with (1,3)(1,4)-ß-glucan (BGL) as the polysaccharide, which could be substituted with barley extract. Lichenase treatment of the NP dramatically modified its physical properties, suggesting the importance of the BGL polymeric forms. NP exhibited distinct potato powder and starch binding activities, which would be attributed to its interactions with the cell wall components and a physical capture of powders by the NP network, respectively. NP supplementation into the potato paste improved its firmness and enabled its printable range shift for 3D food printing to a lower powder-concentration. NP also promoted the dispersion of powders in its suspension, and designed gelation could also be successfully performed by the laser irradiation of an NP suspension containing dispersed curdlan and turmeric powders. Therefore, NP could be applied as a powder modifier to a wide range of products in both conventional cooking, food manufacturing, and next generation processes such as 3D food printing.

4.
Food Sci Nutr ; 7(2): 721-729, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847150

RESUMO

The objective of this study was to investigate the effects of rice variety, water content, and preparation temperature on the textural properties of gels processed from cooked rice grains via high-speed shear homogenization. Rice gels were prepared from seven high-amylose rice varieties. The results demonstrated the significant differences in rice gel hardness and hardening rates during storage based on the rice variety used. The proportion of short chains of amylopectin was negatively correlated with the hardness of the rice gel. The sample temperature before shear treatment also influenced the rice gel hardness. Rice gels prepared from cooked rice maintained at 75°C prior to homogenization showed a higher breaking force than those from cooked rice at 25°C. Observation using scanning electron microscopy demonstrated the tendency of the cooked rice sample maintained at 75°C to form a finer gel network after homogenization than those at 25°C from the same rice variety.

5.
J Appl Glycosci (1999) ; 66(3): 97-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34429687

RESUMO

Ethanol precipitation process for purification of branched dextrin (BD) in Nägeli amylodextrin from waxy rice starch was developed. Temperature and ethanol concentration for precipitation were main parameters affecting the recovery and purity of BD, and the purification condition at 4 °C and 10 % (v/v) ethanol in water was adopted. After four-time precipitation, the BD recovery was 34.6 %, whereas the purity improved from 78.5 % at the initial to 94.5 % at the four-time purified BD (BD4). BD4 mainly showed a chain length distribution between 18 to 35 with a mode length of 25, which shifted after enzymatic debranching with isoamylase to that between 9 and 20 with a mode length of 14. Each purified BD was solubilized in water, and each solution was mixed with methanol-water at 25 °C to a final methanol concentration of 16 M. The flakes of BD precipitated with 16 M methanol exhibited an A-type crystal structure by an X-ray diffraction analysis, and the speed generation of white flakes in 16 M methanol dramatically increased as the purification time increased. The effect of addition of highly branched cyclic dextrin (HBCD) or sodium tetraborate on BD aggregation in 16 M methanol was also investigated, where the former retarded aggregation but the latter had no effect on the velocity. Thus, the purified BD enables rapid characterization of aggregation of double helix structures of A-type crystal structure, and screening of compounds which could affect the phenomena for prediction of potentials in starch modification as well.

6.
J Appl Glycosci (1999) ; 66(4): 113-119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34429689

RESUMO

Rice-gel prepared by the following three steps: rice grain cooking, shearing of the cooked rice, and cooling for gel formation, is expected as a novel food ingredient for modification of various food products such as bread and noodles. To meet the demand for high-throughput systems for research and developments on the new rice gels, herein we established a mini-cooking system for preparation of rice gel samples from grains using a small-scale viscosity analyzer (Rapid Visco Analyzer; RVA). Polished rice grains (4 g) were cooked with 22 mL of water in a canister, and the paddle equipped in the canister was rotated at 2,000 rpm for 30 min (80 °C was used as a representative) to shear the cooked rice. The sheared paste was cooled to 10 °C at 160 rpm, and the initial gelation property was evaluated by viscosity analysis within the RVA. Alternatively, the sheared paste was transferred to an acrylic mold and kept at 4 °C for 0, 1, 3, and 5 days for determination of the hardness with a compression test. Compressive forces required to penetrate 20 % thickness for three tested rice cultivars were measured, and the trend of the value shifts during preservation is similar to the corresponding trend obtained in 300-g grain scale laboratory tests, whereas the individual values were halved in the former. This small cooking method could offer a useful assay system for a rapid evaluation in the breeding programs and in the high-throughput screening of additives for the modification of properties.

7.
Biosci Biotechnol Biochem ; 74(8): 1645-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20699575

RESUMO

Rice plants are known to accumulate starch in leaf sheaths and culms, and in some cultivars significant amounts of starch are present at the mature stage. This can be considered as potential feedstock for the recovery of fermentable sugars. We isolated starches from the culms of cultivars Yumeaoba, Koshihikari, and Leafstar to investigate their structural and physical features. Yumeaoba culm starch contained 20.2% amylose, whereas Koshihikari and Leafstar contained 25.8% and 25.2%. Yumeaoba culm starch was found by chain-length distribution analysis to contain higher amounts of short chains, resulting in lower gelatinization temperature by 7 degrees C, as compared to Koshihikari and Leafstar. Consequently, the rate of enzymatic hydrolysis of Yumeaoba culm starches reached maximum at a lower temperature than Leafstar. Rice culm starch, with a lower gelatinization temperature, can provide an advantageous material for feedstock for bioethanol production in terms of energy conservation.


Assuntos
Metabolismo dos Carboidratos , Oryza/metabolismo , Amido/química , Amido/metabolismo , Bacillus/enzimologia , Biocombustíveis , Gelatina/metabolismo , Hidrólise , Oryza/crescimento & desenvolvimento , alfa-Amilases/metabolismo
8.
Carbohydr Res ; 343(7): 1232-6, 2008 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-18384760

RESUMO

Glucose production from cellulose flakes with cellulases was improved after pretreatment with saturated CaCl2 at room temperature. When pretreated microcrystalline cellulose flakes (Funacel II, Funakoshi Co., Ltd, Tokyo, Japan) were saccharified with the cellulases, 76.8% of the substrate was converted into glucose within 5 h, whereas the corresponding conversion rate of water-pretreated cellulose flakes was 33.8%. To clarify the mechanism of the promotion, cellobiohydrolase I purified from Trichoderma longibrachiatum was used as the model cellulase, which degraded CaCl2-pretreated cellulose more quickly than the water-pretreated cellulose under tested conditions. The maximum amount of the enzyme bound to CaCl2-pretreated cellulose at 37 degrees C was estimated as 1.14 nmol/mg of cellulose, whereas that to water-pretreated cellulose was 0.527 nmol/mg of cellulose. The specific activity of the bound enzyme greatly decreased with the increase of the surface density (rho) of the bound enzyme, and no significant positive effects of the CaCl2-pretreatment on the specific activity could be observed at the same rho value, suggesting that the promotion was attributed mainly to the increase of the surface area of cellulose. The effect was also observed with dewaxed cotton or filter paper, but not with nata de coco cellulose or bagasse cellulose as the substrates. This suggests that the CaCl2-pretreatment serves to increase the surface area of cellulose flakes via liberation of cellulose particles which were artificially aggregated during harsh drying processes of the flakes.


Assuntos
Cloreto de Cálcio/farmacologia , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/química , Trichoderma/enzimologia , Sítios de Ligação , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...