Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 17(7): 1271-1279, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35415780

RESUMO

PURPOSE: Low-energy virtual monochromatic images (VMIs) derived from dual-energy computed tomography (DECT) systems improve lesion conspicuity of head and neck cancer over single-energy CT (SECT). However, DECT systems are installed in a limited number of facilities; thus, only a few facilities benefit from VMIs. In this work, we present a deep learning (DL) architecture suitable for generating pseudo low-energy VMIs of head and neck cancers for facilities that employ SECT imaging. METHODS: We retrospectively analyzed 115 patients with head and neck cancers who underwent contrast enhanced DECT. VMIs at 70 and 50 keV were used as the input and ground truth (GT), respectively. We divided them into two datasets: for DL (104 patients) and for inference with SECT (11 patients). We compared four DL architectures: U-Net, DenseNet-based, and two ResNet-based models. Pseudo VMIs at 50 keV (pVMI50keV) were compared with the GT in terms of the mean absolute error (MAE) of Hounsfield unit (HU) values, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). The HU values for tumors, vessels, parotid glands, muscle, fat, and bone were evaluated. pVMI50keV were generated from actual SECT images and the HU values were evaluated. RESULTS: U-Net produced the lowest MAE (13.32 ± 2.20 HU) and highest PSNR (47.03 ± 2.33 dB) and SSIM (0.9965 ± 0.0009), with statistically significant differences (P < 0.001). The HU evaluation showed good agreement between the GT and U-Net. U-Net produced the smallest absolute HU difference for the tumor, at < 5.0 HU. CONCLUSION: Quantitative comparisons of physical parameters demonstrated that the proposed U-Net could generate high accuracy pVMI50keV in a shorter time compared with the established DL architectures. Although further evaluation on diagnostic accuracy is required, our method can help obtain low-energy VMI from SECT images without DECT systems.


Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...