RESUMO
Clonal eucalyptus plantings have increased in recent years; however, some clones with high production characteristics have vegetative propagation problems because of weak root and aerial development. Endophytic microorganisms live inside healthy plants without causing any damage to their hosts and can be beneficial, acting as plant growth promoters. We isolated endophytic bacteria from eucalyptus plants and evaluated their potential in plant growth promotion of clonal plantlets of Eucalyptus urophylla x E. grandis, known as the hybrid, E. urograndis. Eighteen isolates of E. urograndis, clone 4622, were tested for plant growth promotion using the same clone. These isolates were also evaluated for indole acetic acid production and their potential for nitrogen fixation and phosphate solubilization. The isolates were identified by partial sequencing of 16S rRNA. Bacillus subtilis was the most prevalent species. Several Bacillus species, including B. licheniformis and B. subtilis, were found for the first time as endophytes of eucalyptus. Bacillus sp strain EUCB 10 significantly increased the growth of the root and aerial parts of eucalyptus plantlets under greenhouse conditions, during the summer and winter seasons.
Assuntos
Bacillus/fisiologia , Endófitos/fisiologia , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/microbiologia , Bacillus/isolamento & purificação , Biomassa , Endófitos/isolamento & purificação , Hibridização Genética , Ácidos Indolacéticos/metabolismo , Fixação de Nitrogênio , Fosfatos/metabolismo , Filogenia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , SolubilidadeRESUMO
Isolates of Bipolaris sorokiniana were analyzed by random-amplified polymorphic DNA (RAPD) techniques to determine the amount of intraspecific genetic variability and to study host-pathogen interactions. Ten isolates originated from different regions of Brazil were examined. Plants of the wheat cultivars BR8, BH1146 (original host) and IAC-5 Maringá, classified as resistant, moderately resistant or susceptible to B. sorokiniana, respectively, were inoculated with these 10 isolates. Twenty-seven isolates were recovered from these cultivars and were analyzed by RAPD assay and compared to the RAPD of the original 10 isolates. According to the RAPD profiles there was a high level of genetic variability among the isolates. We detected 69 polymorphic fragments, ranging from 1.6 to 0.54 kb, in the original 10 isolates; 57 fragments with sizes between 1.98 and 0.38 kb from the isolates recovered from BH1146; 47 polymorphic bands, ranging from 1.96-0.54 kb, were detected in the isolates from BR8 and 32 fragments between 1.98 and 0.42 kb in isolates were recovered from IAC-5 Maringá. The number of polymorphic fragments varied, even for the same isolate, when the isolates were recovered from different cultivar hosts
Assuntos
Ascomicetos/genética , DNA Fúngico/análise , Variação Genética , Triticum/microbiologia , Ascomicetos/isolamento & purificação , Brasil , Técnica de Amplificação ao Acaso de DNA Polimórfico , Interações Hospedeiro-Parasita/genéticaRESUMO
Net blotch, caused by the phytopathogen Drechslera teres, is a common disease of barley (Hordeum vulgare L) and is responsible for large economic losses in some barley growing areas. In this study the morphology and genetic variability of eight D. teres isolates from different regions of the Brazilian state of Rio Grande do Sul were investigated. Colony morphology was studied on potato-dextrose-agar (PDA) and genetic variability investigated using the random amplified polymorphic-DNA (RAPD) technique. 27 commercially available primers were tested of which 16 were selected for use in polymorphic analysis due to their good resolution and reproducibility. Similarity coefficients were used to construct dendrograms based on colony morphology and RAPD data showing the relationship between the eight isolates studied. Colony morphology showed variability between the isolates while RAPD assays showed high similarity coefficients, but grouping of the isolates according to the geographic origins of the seeds from which they were isolated was not possible