Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(4): 556-574, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36519756

RESUMO

Coffea canephora (C. canephora) has two botanical varieties, Robusta and Conilon. Intraspecific variability was hypothesized and projected for the selection of C. canephora plants able to maintain production in the context of global climate changes. For that, architectural, C-assimilation and biomass analyses were performed on 17-month-old Robusta (clones 'A1' and '3 V') and Conilon (clones '14' and '19') varieties grown in non-limiting soil, water and mineral nutrient conditions. Nondestructive coffee plant architecture coding, reconstruction and plant photosynthesis estimations were performed using a functional-structural plant modeling platform OpenAlea. 3D reconstructions and inclusion of parameters calculated and estimated from light response curves, such as dark respiration (Rd), maximum rate of carboxylation of RuBisCO and photosynthetic electron transport allowed the estimation of instantaneous and daily plant photosynthesis. The virtual orchard leaf area index was low, and light was not a limiting factor in early C. canephora development stages. Under such conditions, Robusta assimilated more CO2 at the plant and orchard scale and produced higher total biomass than Conilon. Lower plant daily photosynthesis and total biomass were correlated to higher Rd in Conilon than in Robusta. Among the architectural traits, leaf inclination, size and allometry were most highly correlated with plant assimilation and biomass. Relative allocation in leaf biomass was higher in '19' Conilon than in young Robusta plants, indicating intraspecific biomass partitioning. Similarly, variation in relative distribution of the root biomass and the root volume reflected clonal variation in soil occupation, indicating intraspecific variability in space occupation competitiveness. Coffea canephora denoted high root allocation in both Conilon and Robusta clones. However, relevant differences at subspecific levels were found, indicating the high potential of C. canephora to cope with drought events, which are expected to occur more frequently in the future, because of climate changes. The methodology developed here has the potential to be used for other crops and tree species. Highlights Functional-structural plant model was used to estimate photosynthesis on a plant and daily scales in Coffea canephora (C. canephora). Among the architectural traits, leaf shape and inclination had the most impact on photosynthesis and biomass. Under non-limiting conditions, Robusta had higher plant photosynthesis and biomass than Conilon. A higher leaf biomass allocation in Conilon clone '19' than in Robusta suggested variety-specific partitioning. Variation in the relative distribution of the root biomass indicated C. canephora intraspecific soil occupation variability.


Assuntos
Coffea , Coffea/fisiologia , Biomassa , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Transporte de Elétrons
2.
Plant J ; 96(4): 801-814, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30118573

RESUMO

Drought stress is one of the most severe environmental constraints on plant production. Under environmental pressures, complex daily heliotropic adjustments of leaflet angles in soybean can help to reduce transpiration losses by diminishing light interception (paraheliotropism), increase diurnal carbon gain in sparse canopies and reduce carbon gain in dense canopies by solar tracking (diaheliotropism). The plant materials studied were cultivar BR 16 and its genetically engineered isoline P58, ectopically overexpressing AtDREB1A, which is involved in abiotic stress responses. We aimed to follow the movements of central and lateral leaflets in vegetative stages V7-V10 and reproductive stages R4-R5, integrating the reversible morphogenetic changes into an estimate of daily plant photosynthesis using three-dimensional modeling, and to analyze the production parameters of BR 16 and P58. The patterns of daily movements of central leaflets of BR 16 in V7-V10 and R4-R5 were similar, expressing fewer diaheliotropic movements under drought stress than under non-limiting water conditions. Daily heliotropic patterns of lateral leaflets in V7-V10 and R4-R5 showed more diaheliotropic movements in drought-stressed P58 plants than in those grown under non-limiting water conditions. Leaf area in R4-R5 was generally higher in P58 than in BR 16. Drought significantly affected gas exchange and vegetative and reproductive architectural features. DREB1A could be involved in various responses to drought stress. Compared with the parental BR 16, P58 copes with drought through better compensation between diaheliotropic and paraheliotropic movements, finer tuning of water-use efficiency, a lower transpiration rate, higher leaf area and higher pod abortion to accomplish the maximum possible grain production under continued drought conditions.


Assuntos
Glycine max/genética , Proteínas de Soja/genética , Estresse Fisiológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Soja/metabolismo , Glycine max/metabolismo
3.
Ann Bot ; 122(1): 117-131, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29659697

RESUMO

Background and Aims: Dynamics in branch and leaf growth parameters, such as the phyllochron, duration of leaf expansion, leaf life span and bud mortality, determine tree architecture and canopy foliage distribution. We aimed to estimate leaf growth parameters in adult Arabica coffee plants based on leaf supporter axis order and position along the vertical profile, considering their modifications related to seasonal growth, air [CO2] and water availability. Methods: Growth and mortality of leaves and terminal buds of adult Arabica coffee trees were followed in two independent field experiments in two sub-tropical climate regions of Brazil, Londrina-PR (Cfa) and Jaguariúna-SP (Cwa). In the Cwa climate, coffee trees were grown under a FACE (free air CO2 enrichment) facility, where half of those had been irrigated. Plants were observed at a 15-30 d frequency for 1 year. Leaf growth parameters were estimated on five axes orders and expressed as functions of accumulated thermal time (°Cd per leaf). Key Results: The phyllochron and duration of leaf expansion increased with axis order, from the seond to the fourth. The phyllochron and life span during the reduced vegetative seasonal growth were greater than during active growth. It took more thermal time for leaves from the first- to fourth-order axes to expand their blades under irrigation compared with rainfed conditions. The compensation effects of high [CO2] for low water availability were observed on leaf retention on the second and third axes orders, and duration of leaf expansion on the first- and fourth-order axes. The second-degree polynomials modelled leaf growth parameter distribution in the vertical tree profile, and linear regressions modelled the proportion of terminal bud mortality. Conclusions: Leaf growth parameters in coffee plants were determined by axis order. The duration of leaf expansion contributed to phyllochron determination. Leaf growth parameters varied according the position of the axis supporter along the vertical profile, suggesting an effect of axes age and micro-environmental light modulations.


Assuntos
Dióxido de Carbono/metabolismo , Coffea/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Atmosfera , Clima , Coffea/anatomia & histologia , Coffea/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estações do Ano , Água/metabolismo
4.
Springerplus ; 5(1): 2075, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018783

RESUMO

Accurate model of structural elements is necessary to model the foliage and fruit distributions in cultivated plants, both of them being key parameters for yield prediction. However, the level of details in architectural data collection could vary, simplifying the data collection when plants get older and because of the high time cost required. In the present study, we aimed at reconstructing and analyzing plant structure, berry distributions and yield in Coffea arabica (Arabica coffee), by using both detailed or partial morphological information and probabilistic functions. Different datasets of coffee plant architectures were available with different levels of detail depending on the tree age. Three scales of decomposition-plant, axes and metamers were used reconstruct the plant architectures. CoffePlant3D, a software which integrates a series of mathematical, computational and statistical methods organized in three newly developed modules, AmostraCafe3D, VirtualCafe3D and Cafe3D, was developed to accurately reconstruct coffee plants in 3D, whatever the level of details available. The number of metamers of the 2nd order axes was shown to be linearly proportional to that of the orthotropic trunk, and the number of berries per metamer was modeled as a Gaussian function within a specific zone along the plagiotropic axes. This ratio of metamer emission rhythm between the orthotropic trunk and plagiotropic axes represents the pillar of botanical events in the C. arabica development and was central in our modeling approach, especially to reconstruct missing data. The methodology proposed for reconstructing coffee plants under the CoffePlant3D was satisfactorily validated across dataset available and could be performed for any other Arabica coffee variety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...