Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 715: 150001, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38676996

RESUMO

The skeletal muscle is a pivotal organ involved in the regulation of both energy metabolism and exercise capacity. There is no doubt that exercise contributes to a healthy life through the consumption of excessive energy or the release of myokines. Skeletal muscles exhibit insulin sensitivity and can rapidly uptake blood glucose. In addition, they can undergo non-shivering thermogenesis through actions of both the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) and small peptide, sarcolipin, resulting in systemic energy metabolism. Accordingly, the maintenance of skeletal muscles is important for both metabolism and exercise. Prolyl isomerase Pin1 is an enzyme that converts the cis-trans form of proline residues and controls substrate function. We have previously reported that Pin1 plays important roles in insulin release, thermogenesis, and lipolysis. However, the roles of Pin1 in skeletal muscles remains unknown. To clarify this issue, we generated skeletal muscle-specific Pin1 knockout mice. Pin1 deficiency had no effects on muscle weights, morphology and ratio of fiber types. However, they showed exacerbated obesity or insulin resistance when fed with a high-fat diet. They also showed a lower ability to exercise than wild type mice did. We also found that Pin1 interacted with SERCA and elevated its activity, resulting in the upregulation of oxygen consumption. Overall, our study reveals that Pin1 in skeletal muscles contributes to both systemic energy metabolism and exercise capacity.


Assuntos
Metabolismo Energético , Músculo Esquelético , Peptidilprolil Isomerase de Interação com NIMA , Condicionamento Físico Animal , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Masculino , Camundongos , Dieta Hiperlipídica , Metabolismo Energético/genética , Resistência à Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
2.
J Biol Chem ; 299(8): 105027, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423298

RESUMO

Metabolism controls cellular phenotype and fate. In this report, we demonstrate that nicotinamide N-methyltransferase (NNMT), a metabolic enzyme that regulates developmental stem cell transitions and tumor progression, is highly expressed in human idiopathic pulmonary fibrosis (IPF) lungs, and is induced by the pro-fibrotic cytokine, transforming growth factor-ß1 (TGF-ß1) in lung fibroblasts. NNMT silencing reduces the expression of extracellular matrix proteins, both constitutively and in response to TGF-ß1. Furthermore, NNMT controls the phenotypic transition from homeostatic, pro-regenerative lipofibroblasts to pro-fibrotic myofibroblasts. This effect of NNMT is mediated, in part, by the downregulation of lipogenic transcription factors, TCF21 and PPARγ, and the induction of a less proliferative but more differentiated myofibroblast phenotype. NNMT confers an apoptosis-resistant phenotype to myofibroblasts that is associated with the downregulation of pro-apoptotic members of the Bcl-2 family, including Bim and PUMA. Together, these studies indicate a critical role for NNMT in the metabolic reprogramming of fibroblasts to a pro-fibrotic and apoptosis-resistant phenotype and support the concept that targeting this enzyme may promote regenerative responses in chronic fibrotic disorders such as IPF.


Assuntos
Miofibroblastos , Nicotinamida N-Metiltransferase , Humanos , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Miofibroblastos/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
Clin Sci (Lond) ; 136(16): 1229-1240, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043396

RESUMO

Fibrosis involving the lung may occur in many settings, including in association with known environmental agents, connective tissue diseases, and exposure to drugs or radiation therapy. The most common form is referred to as 'idiopathic' since a causal agent or specific association has not been determined; the strongest risk factor for idiopathic pulmonary fibrosis is aging. Emerging studies indicate that targeting certain components of aging biology may be effective in mitigating age-associated fibrosis. While transforming growth factor-ß1 (TGF-ß1) is a central mediator of fibrosis in almost all contexts, and across multiple organs, it is not feasible to target this canonical pathway at the ligand-receptor level due to the pleiotropic nature of its actions; importantly, its homeostatic roles as a tumor-suppressor and immune-modulator make this an imprudent strategy. However, defining targets downstream of its receptor(s) that mediate fibrogenesis, while relatively dispenable for tumor- and immune-suppressive functions may aid in developing safer and more effective therapies. In this review, we explore molecular targets that, although TGF-ß1 induced/activated, may be relatively more selective in mediating tissue fibrosis. Additionally, we explore epigenetic mechanisms with global effects on the fibrogenic process, as well as metabolic pathways that regulate aging and fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Fibroblastos/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
Cells ; 10(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067858

RESUMO

Inflammatory bowel diseases (IBDs) are serious disorders of which the etiologies are not, as yet, fully understood. In this study, Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein was shown to be dramatically upregulated in the colons of dextran sodium sulfate (DSS)-induced ulcerative colitis model mice. Interestingly, Pin1 knockout (KO) mice exhibited significant attenuation of DSS-induced colitis compared to wild-type (WT) mice, based on various parameters, including body weight, colon length, microscopic observation of the intestinal mucosa, inflammatory cytokine expression, and cleaved caspase-3. In addition, a role of Pin1 in inflammation was suggested because the percentage of M1-type macrophages in the colon was decreased in the Pin1 KO mice while that of M2-type macrophages was increased. Moreover, Pin1 KO mice showed downregulation of both Il17 and Il23a expression in the colon, both of which have been implicated in the development of colitis. Finally, oral administration of Pin1 inhibitor partially but significantly prevented DSS-induced colitis in mice, raising the possibility of Pin1 inhibitors serving as therapeutic agents for IBD.


Assuntos
Colite/enzimologia , Colo/enzimologia , Mucosa Intestinal/enzimologia , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/patologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Peptidilprolil Isomerase de Interação com NIMA/genética , Naftoquinonas/farmacologia
5.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919842

RESUMO

Carnosic acid (CA), carnosol (CL) and rosmarinic acid (RA), components of the herb rosemary, reportedly exert favorable metabolic actions. This study showed that both CA and CL, but not RA, induce significant phosphorylation of AMP-dependent kinase (AMPK) and its downstream acetyl-CoA carboxylase 1 (ACC1) in HepG2 hepatoma cells. Glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1), rate-limiting enzymes of hepatic gluconeogenesis, are upregulated by forskolin stimulation, and this upregulation was suppressed when incubated with CA or CL. Similarly, a forskolin-induced increase in CRE transcriptional activity involved in G6PC and PCK1 regulations was also stymied when incubated with CA or CL. In addition, mRNA levels of ACC1, fatty acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP-1c) were significantly reduced when incubated with CA or CL. Finally, it was shown that CA and CL suppressed cell proliferation and reduced cell viability, possibly as a result of AMPK activation. These findings raise the possibility that CA and CL exert a protective effect against diabetes and fatty liver disease, as well as subsequent cases of hepatoma.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Abietanos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/genética , Lipogênese/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ácidos Graxos/biossíntese , Gluconeogênese/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Lipogênese/efeitos dos fármacos , Camundongos , Oxirredução , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rosmarinus/química , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
J Immunol ; 206(4): 766-775, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33431657

RESUMO

Type 17 cytokines have been strongly implicated in mucosal immunity, in part by regulating the production of antimicrobial peptides. Using a mouse model of Citrobacter rodentium infection, which causes colitis, we found that intestinal IL-17RA and IL-17RC were partially required for control of infection in the colon and IL-17 regulates the production of luminal hydrogen peroxide as well as expression of Tnsf13 Reduced Tnfsf13 expression was associated with a profound defect in generating C. rodentium-specific IgA+ Ab-secreting cells. Taken together, intestinal IL-17R signaling plays key roles in controlling invading pathogens, in part by regulating luminal hydrogen peroxide as well as regulating the generation of pathogen-specific IgA+ Ab-secreting cells.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/imunologia , Oxirredutases/imunologia , Receptores de Interleucina-17/imunologia , Transdução de Sinais/imunologia , Animais , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/genética , Humanos , Peróxido de Hidrogênio/imunologia , Imunoglobulina A Secretora/genética , Camundongos , Camundongos Knockout , Oxirredutases/genética , Receptores de Interleucina-17/genética , Transdução de Sinais/genética
7.
Metabolism ; 115: 154459, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33279499

RESUMO

BACKGROUND: Lipolysis is essential for the supply of nutrients during fasting, the control of body weight, and remodeling of white adipose tissues and thermogenesis. In the obese state, lipolysis activity and the expression of adipose triglyceride lipase (ATGL), a rate-limiting enzyme, is suppressed. However, the mechanism underlying the regulation of ATGL remains largely unknown. We previously reported that a high-fat diet obviously increases protein levels of the prolyl isomerase, Pin1, in epididymal white adipose tissue (epiWAT) of mice and that Pin1 KO mice are resistant to developing obesity. RESULTS: The present study found that deletion of the Pin1 gene in epiWAT upregulated lipolysis and increased ATGL protein expression by ~2-fold. In addition, it was demonstrated that Pin1 directly associated with ATGL and enhanced its degradation through the ubiquitin proteasome system. Indeed, Pin1 overexpression decreased ATGL expression levels, whereas Pin1 knockdown by siRNA treatment upregulated ATGL protein levels without altering mRNA levels. Moreover, under a high fat diet (HFD)-fed condition, adipocyte-specific Pin1 KO (adipoPin1 KO) mice had 2-fold increase lipolytic activity and upregulated ß-oxidation-related gene expressions. These mice also gained less body weight, and had better glucose metabolism according to the results of glucose and insulin tolerance tests. CONCLUSION: Taken together, these results showed that Pin1 directly interacted with and degraded ATGL via a ubiquitin-proteasome system, consequently causing the downregulation of lipolysis. Therefore, Pin1 could be considered a target for the treatment of dyslipidemia and related disorders.


Assuntos
Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Lipase/metabolismo , Lipólise/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA/genética
8.
Curr Med Chem ; 27(20): 3314-3329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30394205

RESUMO

The prolyl isomerase Pin1 is a unique enzyme, which isomerizes the cis-trans conformation between pSer/pThr and proline and thereby regulates the function, stability and/or subcellular distribution of its target proteins. Such regulations by Pin1 are involved in numerous physiological functions as well as the pathogenic mechanisms underlying various diseases. Notably, Pin1 deficiency or inactivation is a potential cause of Alzheimer's disease, since Pin1 induces the degradation of Tau. In contrast, Pin1 overexpression is highly correlated with the degree of malignancy of cancers, as Pin1 controls a number of oncogenes and tumor suppressors. Accordingly, Pin1 inhibitors as anti-cancer drugs have been developed. Interestingly, recent intensive studies have demonstrated Pin1 to be responsible for the onset or development of nonalcoholic steatosis, obesity, atherosclerosis, lung fibrosis, heart failure and so on, all of which have been experimentally induced in Pin1 deficient mice. In this review, we discuss the possible applications of Pin1 inhibitors to a variety of diseases including malignant tumors and also introduce the recent advances in Pin1 inhibitor research, which have been reported.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Doença de Alzheimer , Animais , Antineoplásicos , Humanos , Neoplasias , Fosforilação
9.
Cancer Lett ; 470: 106-114, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678165

RESUMO

Pin1 is one member of a group consisting of three prolyl isomerases. Pin1 interacts with the motif containing phospho-Ser/Thr-Pro of substrates and enhances cis-trans isomerization of peptide bonds, thereby controlling the functions of these substrates. Importantly, the Pin1 expression level is highly upregulated in most cancer cells and correlates with malignant properties, and thereby with poor outcomes. In addition, Pin1 was revealed to promote the functions of multiple oncogenes and to abrogate tumor suppressors. Accordingly, Pin1 is well recognized as a master regulator of malignant processes. Recent studies have shown that Pin1 also binds to a variety of metabolic regulators, such as AMP-activated protein kinase, acetyl CoA carboxylase and pyruvate kinase2, indicating Pin1 to have major impacts on lipid and glucose metabolism in cancer cells. In this review, we focus on the roles of Pin1 in metabolic reprogramming, such as "Warburg effects", of cancer cells. Our aim is to introduce these important roles of Pin1, as well as to present evidence supporting the possibility of Pin1 inhibition as a novel anti-cancer strategy.


Assuntos
Glicólise , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Glucose/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Peptidilprolil Isomerase de Interação com NIMA/genética , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo
10.
Cells ; 8(12)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795496

RESUMO

Pin1 is one of the three known prolyl-isomerase types and its hepatic expression level is markedly enhanced in the obese state. Pin1 plays critical roles in favoring the exacerbation of both lipid accumulation and fibrotic change accompanying inflammation. Indeed, Pin1-deficient mice are highly resistant to non-alcoholic steatohepatitis (NASH) development by either a high-fat diet or methionine-choline-deficient diet feeding. The processes of NASH development can basically be separated into lipid accumulation and subsequent fibrotic change with inflammation. In this review, we outline the molecular mechanisms by which increased Pin1 promotes both of these phases of NASH. The target proteins of Pin1 involved in lipid accumulation include insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase 1 (ACC1), while the p60 of the NF-kB complex and transforming growth factor ß (TGF-ß) pathway appear to be involved in the fibrotic process accelerated by Pin1. Interestingly, Pin1 deficiency does not cause abnormalities in liver size, appearance or function. Therefore, we consider the inhibition of increased Pin1 to be a promising approach to treating NASH and preventing hepatic fibrosis.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tecido Adiposo/metabolismo , Animais , Predisposição Genética para Doença , Humanos , Isoenzimas , Metabolismo dos Lipídeos , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Mol Sci ; 20(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546603

RESUMO

Hyperuricemia has been recognized as a risk factor for insulin resistance as well as one of the factors leading to diabetic kidney disease (DKD). Since DKD is the most common cause of end-stage renal disease, we investigated whether febuxostat, a xanthine oxidase (XO) inhibitor, exerts a protective effect against the development of DKD. We used KK-Ay mice, an established obese diabetic rodent model. Eight-week-old KK-Ay mice were provided drinking water with or without febuxostat (15 µg/mL) for 12 weeks and then subjected to experimentation. Urine albumin secretion and degrees of glomerular injury judged by microscopic observations were markedly higher in KK-Ay than in control lean mice. These elevations were significantly normalized by febuxostat treatment. On the other hand, body weights and high serum glucose concentrations and glycated albumin levels of KK-Ay mice were not affected by febuxostat treatment, despite glucose tolerance and insulin tolerance tests having revealed febuxostat significantly improved insulin sensitivity and glucose tolerance. Interestingly, the IL-1ß, IL-6, MCP-1, and ICAM-1 mRNA levels, which were increased in KK-Ay mouse kidneys as compared with normal controls, were suppressed by febuxostat administration. These data indicate a protective effect of XO inhibitors against the development of DKD, and the underlying mechanism likely involves inflammation suppression which is independent of hyperglycemia amelioration.


Assuntos
Anti-Inflamatórios/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Febuxostat/uso terapêutico , Xantina Oxidase/antagonistas & inibidores , Animais , Peso Corporal/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Nefropatias Diabéticas/imunologia , Intolerância à Glucose/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Glomérulos Renais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Ácido Úrico/sangue
12.
Diabetol Metab Syndr ; 11: 57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367234

RESUMO

BACKGROUND: Recently, clinical studies have shown the protective effects of sodium glucose co-transporter2 (SGLT2) inhibitors against progression of diabetic nephropathy, but the underlying molecular mechanisms remain unclear. METHODS: Diabetic mice were prepared by injecting nicotinamide and streptozotocin, followed by high-sucrose diet feeding (NA/STZ/Suc mice). The SGLT2 inhibitor canagliflozin was administered as a 0.03% (w/w) mixture in the diet for 4 weeks. Then, various parameters and effects of canagliflozin on diabetic nephropathy were investigated. RESULTS: Canagliflozin administration to NA/STZ/Suc mice normalized hyperglycemia as well as elevated renal mRNA of collagen 1a1, 1a2, CTGF, TNFα and MCP-1. Microscopic observation revealed reduced fibrotic deposition in the kidneys of canagliflozin-treated NA/STZ/Suc mice. Interestingly, the protein level of Pin1, reportedly involved in the inflammation and fibrosis affecting several tissues, was markedly increased in the NA/STZ/Suc mouse kidney, but this was normalized with canagliflozin treatment. The cells showing increased Pin1 expression in the kidney were mainly mesangial cells, along with podocytes, based on immunohistochemical analysis. Furthermore, it was revealed that canagliflozin induced AMP-activated kinase (AMPK) activation concentration-dependently in CRL1927 mesangial as well as THP-1 macrophage cell lines. AMPK activation was speculated to suppress mesangial cell proliferation and exert anti-inflammatory effects in hematopoietic cells. CONCLUSION: Therefore, we can reasonably suggest that normalized Pin1 expression and AMPK activation contribute to the molecular mechanisms underlying SGLT2 inhibitor-induced suppression of diabetic nephropathy, possibly at least in part by reducing inflammation and fibrotic change.

13.
Oncotarget ; 10(17): 1637-1648, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30899433

RESUMO

The prolyl isomerase Pin1 expression level is reportedly increased in most malignant tissues and correlates with poor outcomes. On the other hand, acetyl CoA carboxylase 1 (ACC1), the rate limiting enzyme of lipogenesis is also abundantly expressed in cancer cells, to satisfy the demand for the fatty acids (FAs) needed for rapid cell proliferation. We found Pin1 expression levels to correlate positively with ACC1 levels in human prostate cancers, and we focused on the relationship between Pin1 and ACC1. Notably, it was demonstrated that Pin1 associates with ACC1 but not with acetyl CoA carboxylase 2 (ACC2) in the overexpression system as well as endogenously in the prostate cancer cell line DU145. This association is mediated by the WW domain in the Pin1 and C-terminal domains of ACC1. Interestingly, Pin1 deficiency or treatment with Pin1 siRNA or the inhibitor juglone markedly reduced ACC1 protein expression without affecting its mRNA level, while Pin1 overexpression increased the ACC1 protein level. In addition, chloroquine treatment restored the levels of ACC1 protein reduced by Pin1 siRNA treatment, indicating that Pin1 suppressed ACC1 degradation through the lysosomal pathway. In brief, we have concluded that Pin1 leads to the stabilization of and increases in ACC1. Therefore, it is likely that the growth-enhancing effect of Pin1 in cancer cells is mediated at least partially by the stabilization of ACC1 protein, corresponding to the well-known potential of Pin1 inhibitors as anti-cancer drugs.

14.
Cell Rep ; 26(12): 3221-3230.e3, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893596

RESUMO

Non-shivering thermogenesis in adipocytes provides defense against low temperatures and obesity development, but the underlying regulatory mechanism remains to be fully clarified. Based on both markedly increased Pin1 expression in states of excess nutrition and resistance to obesity development in Pin1 null mice, we speculated that adipocyte Pin1 may play a role in thermogenic programs. Adipose-specific Pin1 knockout (adPin1 KO) mice showed enhanced transcription of thermogenic genes and tolerance to hypothermia when exposed to cold. In addition, adPin1 KO mice were resistant to high-fat diet-induced obesity and glucose intolerance. A series of experiments revealed that Pin1 binds to PRDM16 and thereby promotes its degradation through the ubiquitin-proteasome system. Consistent with these results, Pin1 deletion in differentiated adipocytes showed enhancement of thermogenic programs in response to the ß3 agonist CL316243 through the upregulation of PRDM16 proteins. These observations indicate that Pin1 is a negative regulator of non-shivering thermogenesis.


Assuntos
Adipócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteólise , Termogênese/fisiologia , Fatores de Transcrição/metabolismo , Adipócitos/citologia , Animais , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA/genética , Ligação Proteica , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Ubiquitinação/fisiologia
15.
Int J Mol Sci ; 19(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544662

RESUMO

Recent clinical studies have demonstrated the protective effect of xanthine oxidase (XO) inhibitors against chronic kidney diseases, although the underlying molecular mechanisms remain unclear. However, to date, neither clinical nor basic research has been carried out to elucidate the efficacy of XO inhibitor administration for IgA nephropathy. We thus investigated whether febuxostat, an XO inhibitor, exerts a protective effect against the development of IgA nephropathy, using gddY mice as an IgA nephropathy rodent model. Eight-week-old gddY mice were provided drinking water with (15 µg/mL) or without febuxostat for nine weeks and then subjected to experimentation. Elevated serum creatinine and degrees of glomerular sclerosis and fibrosis, judged by microscopic observations, were significantly milder in the febuxostat-treated than in the untreated gddY mice, while body weights and serum IgA concentrations did not differ between the two groups. In addition, elevated mRNA levels of inflammatory cytokines such as TNFα, MCP-1, IL-1ß, and IL-6, collagen isoforms and chemokines in the gddY mouse kidneys were clearly normalized by the administration of febuxostat. These data suggest a protective effect of XO inhibitors against the development of IgA nephropathy, possibly via suppression of inflammation and its resultant fibrotic changes, without affecting the serum IgA concentration.


Assuntos
Anti-Inflamatórios/uso terapêutico , Progressão da Doença , Febuxostat/uso terapêutico , Glomerulonefrite por IGA/tratamento farmacológico , Xantina Oxidase/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Quimiocinas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Febuxostat/farmacologia , Feminino , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Glomerulonefrite por IGA/enzimologia , Glomerulonefrite por IGA/patologia , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos BALB C , Xantina Oxidase/metabolismo
16.
Int J Mol Sci ; 19(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297626

RESUMO

The rising prevalence of non-alcoholic fatty liver disease (NAFLD) parallels the global increase in the number of people diagnosed with obesity and metabolic syndrome. The gut-liver axis (GLA) plays an important role in the pathogenesis of NAFLD/non-alcoholic steatohepatitis (NASH). In this review, we discuss the clinical significance and underlying mechanisms of action of gut-derived secretory factors in NAFLD/NASH, focusing on recent human studies. Several studies have identified potential causal associations between gut-derived secretory factors and NAFLD/NASH, as well as the underlying mechanisms. The effects of gut-derived hormone-associated drugs, such as glucagon-like peptide-1 analog and recombinant variant of fibroblast growth factor 19, and other new treatment strategies for NAFLD/NASH have also been reported. A growing body of evidence highlights the role of GLA in the pathogenesis of NAFLD/NASH. Larger and longitudinal studies as well as translational research are expected to provide additional insights into the role of gut-derived secretory factors in the pathogenesis of NAFLD/NASH, possibly providing novel markers and therapeutic targets in patients with NAFLD/NASH.


Assuntos
Células Enteroendócrinas/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Peptídeos Semelhantes ao Glucagon/genética , Peptídeos Semelhantes ao Glucagon/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurotensina/genética , Neurotensina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia
17.
Curr Med Chem ; 25(9): 984-1001, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28990516

RESUMO

BACKGROUND: Gut microbiota play a vital role not only in the digestion and absorption of nutrients, but also in homeostatic maintenance of host immunity, metabolism and the gut barrier. Recent evidence suggests that gut microbiota alterations contribute to the pathogenesis of metabolic disorders. OBJECTIVE AND METHOD: In this review, we discuss the association between the gut microbiota and metabolic disorders, such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease, and the contribution of relevant modulating interventions, focusing on recent human studies. RESULTS: Several studies have identified potential causal associations between gut microbiota and metabolic disorders, as well as the underlying mechanisms. The effects of modulating interventions, such as prebiotics, probiotics, fecal microbiota transplantation, and other new treatment possibilities on these metabolic disorders have also been reported. CONCLUSION: A growing body of evidence highlights the role of gut microbiota in the development of dysbiosis, which in turn influences host metabolism and disease phenotypes. Further studies are required to elucidate the precise mechanisms by which gut microbiota-derived mediators induce metabolic disorders and modulating interventions exert their beneficial effects in humans. The gut microbiota represents a novel potential therapeutic target for a range of metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/terapia , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/terapia , Obesidade/microbiologia , Obesidade/terapia , Animais , Transplante de Microbiota Fecal , Humanos , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Prebióticos , Probióticos/uso terapêutico
18.
Sci Rep ; 7(1): 13026, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026155

RESUMO

The Trk-fused gene (TFG) is reportedly involved in the process of COPII-mediated vesicle transport and missense mutations in TFG cause several neurodegenerative diseases including hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P). The high coincidence ratio between HMSN-P and diabetes mellitus suggests TFG to have an important role(s) in glucose homeostasis. To examine this possibility, ß-cell specific TFG knockout mice (ßTFG KO) were generated. Interestingly, ßTFG KO displayed marked glucose intolerance with reduced insulin secretion. Immunohistochemical analysis revealed smaller ß-cell masses in ßTFG KO than in controls, likely attributable to diminished ß-cell proliferation. Consistently, ß-cell expansion in response to a high-fat, high-sucrose (HFHS) diet was significantly impaired in ßTFG KO. Furthermore, glucose-induced insulin secretion was also markedly impaired in islets isolated from ßTFG KO. Electron microscopic observation revealed endoplasmic reticulum (ER) dilatation, suggestive of ER stress, and smaller insulin crystal diameters in ß-cells of ßTFG KO. Microarray gene expression analysis indicated downregulation of NF-E2 related factor 2 (Nrf2) and its downstream genes in TFG depleted islets. Collectively, TFG in pancreatic ß-cells plays a vital role in maintaining both the mass and function of ß-cells, and its dysfunction increases the tendency to develop glucose intolerance.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Proteínas/metabolismo , Animais , Proliferação de Células , Regulação para Baixo/genética , Estresse do Retículo Endoplasmático , Glucose/farmacologia , Intolerância à Glucose , Hipertrofia , Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Integrases/metabolismo , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Especificidade de Órgãos
19.
Int J Mol Sci ; 18(8)2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28777298

RESUMO

Recent clinical studies have revealed the treatment of diabetic patients with sodium glucose co-transporter2 (SGLT2) inhibitors to reduce the incidence of cardiovascular events. Using nicotinamide and streptozotocin (NA/STZ) -treated ApoE KO mice, we investigated the effects of short-term (seven days) treatment with the SGLT2 inhibitor luseogliflozin on mRNA levels related to atherosclerosis in the aorta, as well as examining the long-term (six months) effects on atherosclerosis development. Eight-week-old ApoE KO mice were treated with NA/STZ to induce diabetes mellitus, and then divided into two groups, either untreated, or treated with luseogliflozin. Seven days after the initiation of luseogliflozin administration, atherosclerosis-related mRNA levels in the aorta were compared among four groups; i.e., wild type C57/BL6J, native ApoE KO, and NA/STZ-treated ApoE KO mice, with or without luseogliflozin. Short-term luseogliflozin treatment normalized the expression of inflammation-related genes such as F4/80, TNFα, IL-1ß, IL-6, ICAM-1, PECAM-1, MMP2 and MMP9 in the NA/STZ-treated ApoE KO mice, which showed marked elevations as compared with untreated ApoE KO mice. In contrast, lipid metabolism-related genes were generally unaffected by luseogliflozin treatment. Furthermore, after six-month treatment with luseogliflozin, in contrast to the severe and widely distributed atherosclerotic changes in the aortas of NA/STZ-treated ApoE KO mice, luseogliflozin treatment markedly attenuated the progression of atherosclerosis, without affecting serum lipid parameters such as high density lipoprotein, low density lipoprotein and triglyceride levels. Given that luseogliflozin normalized the aortic mRNA levels of inflammation-related, but not lipid-related, genes soon after the initiation of treatment, it is not unreasonable to speculate that the anti-atherosclerotic effect of this SGLT2 inhibitor emerges rapidly, possibly via the prevention of inflammation rather than of hyperlipidemia.


Assuntos
Aorta/metabolismo , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Inflamação/genética , Metabolismo dos Lipídeos/genética , Inibidores do Transportador 2 de Sódio-Glicose , Sorbitol/análogos & derivados , Animais , Aterosclerose/complicações , Aterosclerose/genética , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/complicações , Hiperlipidemias/tratamento farmacológico , Inflamação/complicações , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Niacinamida , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Sorbitol/farmacologia , Sorbitol/uso terapêutico , Estreptozocina , Regulação para Cima/efeitos dos fármacos
20.
J Biol Chem ; 292(28): 11886-11895, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28566287

RESUMO

The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic ß cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic ß cells, we generated ß-cell-specific Pin1 KO (ßPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the ßPin1 KO mice. Pin1 enhanced pancreatic ß-cell proliferation, as indicated by a reduced ß-cell mass in ßPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic ß-cell growth in the ßPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO ß cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic ß cells and that Pin1 both promotes ß-cell proliferation and activates insulin secretion.


Assuntos
Indução Enzimática , Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Sinalização do Cálcio , Linhagem Celular , Proliferação de Células , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Mutação , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/genética , Obesidade/etiologia , Obesidade/patologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...