Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(30): 27802-27810, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546672

RESUMO

Here, we report a novel photo-on-demand in situ phosgenation reaction that crosses three phases of a heterogeneous solution of chloroform (CHCl3) and aqueous NaOH containing an aryl alcohol or amine. This reaction system enables the safe, convenient, and inexpensive synthesis of carbonate esters, polycarbonates, and N-substituted ureas from aryl alcohols, aryl diols, and primary/secondary amines, respectively, on a practical scale and with good yield. The photochemical oxidation of CHCl3 to phosgene (COCl2) occurs upon irradiation with UV light from a low-pressure mercury lamp of both the gas and liquid phases of the reaction system under O2 bubbling of the vigorously stirred sample solution. The following reaction mechanisms are suggested: The aryl alcohol reacts in situ with the generated COCl2 at the interfaces of the organic/aqueous phases and aqueous/gas phases, in competition with the decomposition of COCl2 due to hydrolysis. Nucleophilicity and hydrophilicity are enhanced by the formation of aryl alkoxide ion through the reaction with NaOH, whereas the reaction of amine proceeds through neutralization of the generated HCl by the aqueous NaOH.

2.
ACS Omega ; 8(2): 2669-2684, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687089

RESUMO

N-substituted trichloroacetamides (NTCAs), which serve as blocked isocyanates, were synthesized in ∼97% yields by in situ photo-on-demand trichloroacetylation of amines with tetrachloroethylene (TCE). The reactions were performed by photo-irradiation of TCE solutions containing an amine under O2 bubbling over 70 °C with a low-pressure mercury lamp. TCE underwent photochemical oxidation to afford trichloroacetyl chloride having high toxicity and corrosivity, which then reacts in situ with the amine to afford NTCA. Compared with conventional NTCA synthesis with hexachloroacetone, the present reaction has the advantage of being widely applicable to a variety of amines, even those with low nucleophilicity such as amides, fluorinated amines, and amine HCl salts. NTCAs could be converted to the corresponding N-substituted ureas and carbamates through base-catalyzed condensation with amines and alcohols, respectively, with the elimination of CHCl3. The reaction may proceed by the initial formation of isocyanate and its subsequent addition reaction with the amine or alcohol. This photochemical reaction also enables the synthesis of fluorinated NTCAs, which accelerate the reactions, and realizes the synthesis of novel fluorinated chemicals including polyurethanes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...