Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 190(12): 4139-46, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18408034

RESUMO

The soil actinomycete Kocuria rhizophila belongs to the suborder Micrococcineae, a divergent bacterial group for which only a limited amount of genomic information is currently available. K. rhizophila is also important in industrial applications; e.g., it is commonly used as a standard quality control strain for antimicrobial susceptibility testing. Sequencing and annotation of the genome of K. rhizophila DC2201 (NBRC 103217) revealed a single circular chromosome (2,697,540 bp; G+C content of 71.16%) containing 2,357 predicted protein-coding genes. Most of the predicted proteins (87.7%) were orthologous to actinobacterial proteins, and the genome showed fairly good conservation of synteny with taxonomically related actinobacterial genomes. On the other hand, the genome seems to encode much smaller numbers of proteins necessary for secondary metabolism (one each of nonribosomal peptide synthetase and type III polyketide synthase), transcriptional regulation, and lateral gene transfer, reflecting the small genome size. The presence of probable metabolic pathways for the transformation of phenolic compounds generated from the decomposition of plant materials, and the presence of a large number of genes associated with membrane transport, particularly amino acid transporters and drug efflux pumps, may contribute to the organism's utilization of root exudates, as well as the tolerance to various organic compounds.


Assuntos
Genoma Bacteriano , Micrococcaceae/genética , Microbiologia do Solo , DNA Bacteriano/química , DNA Bacteriano/genética , Micrococcaceae/classificação , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
2.
Environ Microbiol ; 8(2): 334-46, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16423019

RESUMO

Rhodococcus erythropolis strain PR4 has been isolated as an alkane-degrading bacterium. The strain harbours one linear plasmid, pREL1 (271 577 bp) and two circular plasmids, pREC1 (104 014 bp) and pREC2 (3637 bp), all with some sequence similarities to other Rhodococcus plasmids. For pREL1, pREC1 and pREC2, 298, 102 and 3 open reading frames, respectively, were predicted. Linear plasmid pREL1 has several regions homologous to plasmid pBD2 found in R. erythropolis BD2. Sequence analysis of pREL1 and pBD2 identified common metal-resistance genes on both, but pREL1 also encodes alkane-degradation genes not found on pBD2, with enzyme constituents some of which are quite different from those of other organisms. The alkane hydroxylase consisted of a cytochrome P450 monooxygenase, a 2Fe-2S ferredoxin, and a ferredoxin reductase. The ferredoxin reductase amino acid sequence resembles the AlkT (rubredoxin reductase) sequence. A zinc-containing alcohol dehydrogenase further oxydizes alkanols, alkane oxidation products catalysed by alkane hydroxylase. Of the circular plasmids, the pREC1 sequence is partially similar to the sequence of pREAT701, the virulence plasmid found in Rhodococcus equi. pREC1 has no pREAT701 virulence genes and encodes genes for beta-oxidation of fatty acids. Thus, joint actions of enzymes encoded by pREL1 and pREC1 may enable efficient mineralization of alkanes.


Assuntos
DNA Bacteriano/genética , Genes Bacterianos , Plasmídeos/genética , Rhodococcus/genética , Análise de Sequência de DNA , Sequência de Bases , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...