Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 45(3): 320-327, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38331963

RESUMO

BACKGROUND AND PURPOSE: Biomarkers have been required for diagnosing early Alzheimer disease. We assessed the utility of hippocampal diffusion parameters for diagnosing Alzheimer disease pathology in mild cognitive impairment. MATERIALS AND METHODS: Sixty-nine patients with mild cognitive impairment underwent both CSF measurement and multi-shell diffusion imaging at 3T. Based on the CSF biomarker level, patients were classified according to the presence (Alzheimer disease group, n = 35) or absence (non-Alzheimer disease group, n = 34) of Alzheimer disease pathology. Neurite orientation dispersion and density imaging and diffusion tensor imaging parametric maps were generated. Two observers independently created the hippocampal region of interest for calculating histogram features. Interobserver correlations were calculated. The statistical significance of intergroup differences was tested by using the Mann-Whitney U test. Logistic regression analyses, using both the clinical scale and the image data, were used to predict intergroup differences, after which group discriminations were performed. RESULTS: Most intraclass correlation coefficient values were between 0.59 and 0.91. In the regions of interest of both observers, there were statistically significant intergroup differences for the left-side neurite orientation dispersion and density imaging-derived intracellular volume fraction, right-side diffusion tensor imaging-derived mean diffusivity, left-side diffusion tensor imaging-derived mean diffusivity, axial diffusivity, and radial diffusivity (P < .05). Logistic regression models revealed that diffusion parameters contributed the most to discriminating between the groups. The areas under the receiver operating characteristic curve for the regions of interest of observers A/B were 0.69/0.68, 0.69/0.68, 0.73/0.68, 0.71/0.68, and 0.68/0.68 for the left-side intracellular volume fraction (mean), right-side mean diffusivity (mean), left-side mean diffusivity (10th percentile), axial diffusivity (10th percentile), and radial diffusivity (mean). CONCLUSIONS: Hippocampal diffusion parameters might be useful for the early diagnosis of Alzheimer disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Biomarcadores
2.
Magn Reson Med Sci ; 16(3): 209-216, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-27795484

RESUMO

PURPOSE: Silent magnetic resonance imaging (MRI) scans produce reduced acoustic noise and are considered more gentle for sedated children. The aim of this study was to compare the validity of T1- (T1W) and T2-weighted (T2W) silent sequences for myelination assessment in children with conventional spin-echo sequences. MATERIALS AND METHODS: A total of 30 children (21 boys, 9 girls; age range: 1-83 months, mean age: 35.5 months, median age: 28.5 months) were examined using both silent and spin-echo sequences. Acoustic noise levels were analyzed and compared. The degree of myelination was qualitatively assessed via consensus, and T1W and T2W signal intensities were quantitatively measured by percent contrast. RESULTS: Acoustic noise levels were significantly lower during silent sequences than during conventional sequences (P < 0.0001 for both T1W and T2W). Inter-method comparison indicated overall good to excellent agreement (T1W and T2W images, κ = 0.76 and 0.80, respectively); however, agreement was poor for cerebellar myelination on T1W images (κ = 0.14). The percent contrast of silent and conventional MRI sequences had a strong correlation (T1W, correlation coefficient [CC] = 0.76; T1W excluding the middle cerebellar peduncle, CC = 0.82; T2W, CC = 0.91). CONCLUSIONS: For brain MRI, silent sequences significantly reduced acoustic noise and provided diagnostic image quality for myelination evaluations; however, the two methods differed with respect to cerebellar delineation on T1W sequences.


Assuntos
Acústica , Encéfalo/diagnóstico por imagem , Doenças Desmielinizantes/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...