Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Microbiol Spectr ; 11(4): e0044023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409959

RESUMO

The in vitro growth transformation of primary B cells by Epstein-Barr virus (EBV) is the initial step in the development of posttransplant lymphoproliferative disorder (PTLD). We performed electron microscopic analysis and immunostaining of primary B cells infected with wild-type EBV. Interestingly, the nucleolar size was increased by two days after infection. A recent study found that nucleolar hypertrophy, which is caused by the induction of the IMPDH2 gene, is required for the efficient promotion of growth in cancers. In the present study, RNA-seq revealed that the IMPDH2 gene was significantly induced by EBV and that its level peaked at day 2. Even without EBV infection, the activation of primary B cells by the CD40 ligand and interleukin-4 increased IMPDH2 expression and nucleolar hypertrophy. Using EBNA2 or LMP1 knockout viruses, we found that EBNA2 and MYC, but not LMP1, induced the IMPDH2 gene during primary infections. IMPDH2 inhibition by mycophenolic acid (MPA) blocked the growth transformation of primary B cells by EBV, leading to smaller nucleoli, nuclei, and cells. Mycophenolate mofetil (MMF), which is a prodrug of MPA that is approved for use as an immunosuppressant, was tested in a mouse xenograft model. Oral MMF significantly improved the survival of mice and reduced splenomegaly. Taken together, these results indicate that EBV induces IMPDH2 expression through EBNA2-dependent and MYC-dependent mechanisms, leading to the hypertrophy of the nucleoli, nuclei, and cells as well as efficient cell proliferation. Our results provide basic evidence that IMPDH2 induction and nucleolar enlargement are crucial for B cell transformation by EBV. In addition, the use of MMF suppresses PTLD. IMPORTANCE EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).


Assuntos
Infecções por Vírus Epstein-Barr , Transtornos Linfoproliferativos , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Virais/genética , Hipertrofia , IMP Desidrogenase
2.
Nucleic Acids Res ; 51(2): 783-795, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610792

RESUMO

The number of genetic variations in the SARS-CoV-2 genome has been increasing primarily due to continuous viral mutations. Here, we report that the human APOBEC3A (A3A) cytidine deaminase plays a critical role in the induction of C-to-U substitutions in the SARS-CoV-2 genome. Bioinformatic analysis of the chronological genetic changes in a sequence database indicated that the largest UC-to-UU mutation signature, consistent with APOBEC-recognized nucleotide motifs, was predominant in single-stranded RNA regions of the viral genome. In SARS-CoV-2-infected cells, exogenous expression of A3A but not expression of other APOBEC proteins induced UC-to-UU mutations in viral RNA (vRNA). Additionally, the mutated C bases were often located at the tips in bulge or loop regions in the vRNA secondary structure. Interestingly, A3A mRNA expression was drastically increased by interferons (IFNs) and tumour necrosis factor-α (TNF-α) in epithelial cells derived from the respiratory system, a site of efficient SARS-CoV-2 replication. Moreover, the UC-to-UU mutation rate was increased in SARS-CoV-2 produced from lung epithelial cells treated with IFN-ß and TNF-α, but not from CRISPR/Cas9-based A3A knockout cells. Collectively, these findings demonstrate that A3A is a primary host factor that drives mutations in the SARS-CoV-2 RNA genome via RNA editing.


Assuntos
Citidina Desaminase , Mutação , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/virologia , Citidina Desaminase/metabolismo , Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , Fator de Necrose Tumoral alfa/genética
3.
Microbiol Spectr ; 10(4): e0150722, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35894615

RESUMO

High genetic diversity, including the emergence of recombinant forms (RFs), is one of the most prominent features of human immunodeficiency virus type 1 (HIV-1). Conventional detection of HIV-1 RFs requires pretreatments, i.e., cloning or single-genome amplification, to distinguish them from dual- or multiple-infection variants. However, these processes are time-consuming and labor-intensive. Here, we constructed a new nanopore sequencing-based platform that enables us to obtain distinctive genetic information for intersubtype RFs and dual-infection HIV-1 variants by using amplicons of HIV-1 near-full-length genomes or two overlapping half-length genome fragments. Repeated benchmark tests of HIV-1 proviral DNA revealed consensus sequence inference with a reduced error rate, allowing us to obtain sufficiently accurate sequence data. In addition, we applied the platform for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection according to Sanger sequencing-based genotyping tests for HIV-1 drug resistance. For each RF infection case, replicated analyses involving our nanopore sequencing-based platform consistently produced long consecutive analogous consensus sequences with mosaic genomic structures consisting of two different subtypes. In contrast, we detected multiple heterologous sequences in each dual-infection case. These results demonstrate that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Since the genetic diversity of HIV-1 continues to gradually increase, this system will help accelerate full-length genome analysis and molecular epidemiological surveillance for HIV-1. IMPORTANCE HIV-1 is characterized by large genetic differences, including HIV-1 recombinant forms (RFs). Conventional genetic analyses require time-consuming pretreatments, i.e., cloning or single-genome amplification, to distinguish RFs from dual- or multiple-infection cases. In this study, we developed a new analytical system for HIV-1 sequence data obtained by nanopore sequencing. The error rate of this method was reduced to ~0.06%. We applied this system for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection, which were extracted from 373 cases of HIV patients based on our retrospective analysis of HIV-1 drug resistance genotyping test results. We found that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Our protocol will be useful for epidemiological surveillance to examine HIV-1 transmission as well as for genotypic tests of HIV-1 drug resistance in clinical settings.


Assuntos
Infecções por HIV , HIV-1 , Sequenciamento por Nanoporos , Genoma Viral , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , HIV-1/genética , Humanos , Filogenia , Recombinação Genética , Estudos Retrospectivos , Análise de Sequência de DNA
4.
Virus Evol ; 8(1): veac034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478716

RESUMO

There were five epidemic waves of coronavirus disease 2019 in Japan between 2020 and 2021. It remains unclear how the domestic waves arose and abated. To better understand this, we analyzed the pangenomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and characterized the molecular epidemiological features of the five epidemic waves in Japan. In this study, we performed deep sequencing to determine the pangenomic SARS-CoV-2 sequences of 1,286 samples collected in two cities far from each other, Tokyo Metropolis and Nagoya. Then, the spatiotemporal genetic changes of the obtained sequences were compared with the sequences available in the Global Initiative on Sharing All Influenza Data (GISAID) database. A total of 873 genotypes carrying different sets of mutations were identified in the five epidemic waves. Phylogenetic analysis demonstrated that sharp displacements of lineages and genotypes occurred between consecutive waves over the 2 years. In addition, a wide variety of genotypes were observed in the early half of each wave, whereas a few genotypes were detected across Japan during an entire wave. Phylogenetically, putative descendant genotypes observed late in each wave displayed regional clustering and evolution in Japan. The genetic diversity of SARS-CoV-2 displayed uneven dynamics during each epidemic wave in Japan. Our findings provide an important molecular epidemiological basis to aid in controlling future SARS-CoV-2 epidemics.

5.
Life Sci Alliance ; 5(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35256514

RESUMO

Neutralizing antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are useful for patients' treatment of the coronavirus disease 2019 (COVID-19). We report here affinity maturation of monobodies against the SARS-CoV-2 spike protein and their neutralizing activity against SARS-CoV-2 B.1.1 (Pango v.3.1.14) as well as four variants of concern. We selected matured monobodies from libraries with multi-site saturation mutagenesis on the recognition loops through in vitro selection. One clone, the C4-AM2 monobody, showed extremely high affinity (K D < 0.01 nM) against the receptor-binding domain of the SARS-CoV-2 B.1.1, even in monomer form. Furthermore, the C4-AM2 monobody efficiently neutralized the SARS-CoV-2 B.1.1 (IC 50 = 46 pM, 0.62 ng/ml), and the Alpha (IC 50 = 77 pM, 1.0 ng/ml), Beta (IC 50 = 0.54 nM, 7.2 ng/ml), Gamma (IC 50 = 0.55 nM, 7.4 ng/ml), and Delta (IC 50 = 0.59 nM, 8.0 ng/ml) variants. The obtained monobodies would be useful as neutralizing proteins against current and potentially hazardous future SARS-CoV-2 variants.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Afinidade de Anticorpos/imunologia , COVID-19/imunologia , COVID-19/virologia , Humanos , Receptores de Coronavírus/imunologia
6.
J Biol Chem ; 298(3): 101724, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35157849

RESUMO

ORF8 is an accessory protein encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Consensus regarding the biological functions of ORF8 is lacking, largely because the fundamental characteristics of this protein in cells have not been determined. To clarify these features, we herein established an ORF8 expression system in 293T cells. Using this system, approximately 41% of the ORF8 expressed in 293T cells were secreted extracellularly as a glycoprotein homodimer with inter/intramolecular disulfide bonds. Intracellular ORF8 was sensitive to the glycosidase Endo H, whereas the secreted portion was Endo-H-resistant, suggesting that secretion occurs via a conventional pathway. Additionally, immunoblotting analysis showed that the total amounts of the major histocompatibility complex class Ι (MHC-I), angiotensin-converting enzyme 2 (ACE2), and SARS-CoV-2 spike (CoV-2 S) proteins coexpressed in cells were not changed by the increased ORF8 expression, although FACS analysis revealed that the expression of the cell surface MHC-I protein, but not that of ACE2 and CoV-2 S proteins, was reduced by ORF8 expression. Finally, we demonstrate by RNA-seq analysis that ORF8 had no significant stimulatory effects in human primary monocyte-derived macrophages (MDMs). Taken together, our results provide fundamental evidence that the ORF8 glycoprotein acts as a secreted homodimer, and its functions are likely associated with the intracellular transport and/or extracellular signaling in SARS-CoV-2 infection.


Assuntos
COVID-19 , Glicoproteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas Virais , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Glicoproteínas/metabolismo , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Virais/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-31552198

RESUMO

In the Plasmodium lifecycle two infectious stages of parasites, merozoites, and sporozoites, efficiently infect mammalian host cells, erythrocytes, and hepatocytes, respectively. The apical structure of merozoites and sporozoites contains rhoptry and microneme secretory organelles, which are conserved with other infective forms of apicomplexan parasites. During merozoite invasion of erythrocytes, some rhoptry proteins are secreted to form a tight junction between the parasite and target cell, while others are discharged to maintain subsequent infection inside the parasitophorous vacuole. It has been questioned whether the invasion mechanisms mediated by rhoptry proteins are also involved in sporozoite invasion of two distinct target cells, mosquito salivary glands and mammalian hepatocytes. Recently we demonstrated that rhoptry neck protein 2 (RON2), which is crucial for tight junction formation in merozoites, is also important for sporozoite invasion of both target cells. With the aim of comprehensively describing the mechanisms of sporozoite invasion, the expression and localization profiles of rhoptry proteins were investigated in Plasmodium berghei sporozoites. Of 12 genes representing merozoite rhoptry molecules, nine are transcribed in oocyst-derived sporozoites at a similar or higher level compared to those in blood-stage schizonts. Immuno-electron microscopy demonstrates that eight proteins, namely RON2, RON4, RON5, ASP/RON1, RALP1, RON3, RAP1, and RAMA, localize to rhoptries in sporozoites. It is noteworthy that most rhoptry neck proteins in merozoites are localized throughout rhoptries in sporozoites. This study demonstrates that most rhoptry proteins, except components of the high-molecular mass rhoptry protein complex, are commonly expressed in merozoites and sporozoites in Plasmodium spp., which suggests that components of the invasion mechanisms are basically conserved between infective forms independently of their target cells. Combined with sporozoite-stage specific gene silencing strategies, the contribution of rhoptry proteins in invasion mechanisms can be described.


Assuntos
Perfilação da Expressão Gênica , Merozoítos/química , Plasmodium berghei/química , Proteínas de Protozoários/análise , Esporozoítos/química , Animais , Anopheles , Western Blotting , Células Cultivadas , Células Epiteliais/parasitologia , Hepatócitos/parasitologia , Mamíferos , Merozoítos/genética , Microscopia Imunoeletrônica , Organelas/química , Plasmodium berghei/genética , Transporte Proteico , Reação em Cadeia da Polimerase em Tempo Real , Esporozoítos/genética
8.
Int J Parasitol ; 49(9): 725-735, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31247198

RESUMO

The malaria parasite sporozoite sequentially invades mosquito salivary glands and mammalian hepatocytes; and is the Plasmodium lifecycle infective form mediating parasite transmission by the mosquito vector. The identification of several sporozoite-specific secretory proteins involved in invasion has revealed that sporozoite motility and specific recognition of target cells are crucial for transmission. It has also been demonstrated that some components of the invasion machinery are conserved between erythrocytic asexual and transmission stage parasites. The application of a sporozoite stage-specific gene knockdown system in the rodent malaria parasite, Plasmodium berghei, enables us to investigate the roles of such proteins previously intractable to study due to their essentiality for asexual intraerythrocytic stage development, the stage at which transgenic parasites are derived. Here, we focused on the rhoptry neck protein 11 (RON11) that contains multiple transmembrane domains and putative calcium-binding EF-hand domains. PbRON11 is localised to rhoptry organelles in both merozoites and sporozoites. To repress PbRON11 expression exclusively in sporozoites, we produced transgenic parasites using a promoter-swapping strategy. PbRON11-repressed sporozoites showed significant reduction in attachment and motility in vitro, and consequently failed to efficiently invade salivary glands. PbRON11 was also determined to be essential for sporozoite infection of the liver, the first step during transmission to the vertebrate host. RON11 is demonstrated to be crucial for sporozoite invasion of both target host cells - mosquito salivary glands and mammalian hepatocytes - via involvement in sporozoite motility.


Assuntos
Anopheles/parasitologia , Hepatócitos/parasitologia , Plasmodium berghei/fisiologia , Proteínas de Protozoários/fisiologia , Animais , Southern Blotting , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Eritrócitos/parasitologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Proteínas de Protozoários/imunologia , Coelhos , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândulas Salivares/parasitologia , Esporozoítos/fisiologia
9.
Antiviral Res ; 162: 101-109, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30582937

RESUMO

Antiretroviral therapy (ART) against HIV-1 infection offers the promise of controlling disease progression and prolonging the survival of HIV-1-infected patients. However, even the most potent ART regimens available today cannot cure HIV-1. Because patients will be exposed to ART for many years, physicians and researchers must anticipate the emergence of drug-resistant HIV-1, potential adverse effects of the current drugs, and need for future drug development. In this study, we screened a small-molecule compound library using cell-based anti-HIV-1 assays and discovered a series of novel anti-HIV-1 compounds, 4-oxoquinolines. These compounds exhibited potent anti-HIV-1 activity (EC50 < 0.1 µM) with high selectivity indexes (CC50/EC50 > 2500) and favorable pharmacokinetic profiles in mice. Surprisingly, our novel compounds have a chemical backbone similar to the clinically used integrase (IN) strand transfer inhibitor (INSTI) elvitegravir, although they lack the crucial 3-carboxylate moiety needed for the common INSTI diketo motif. Indeed, the new 4-oxoquinoline derivatives have no detectable INSTI activity. In addition, various drug-resistant HIV-1 strains did not display cross resistance to these compounds. Interestingly, time-of-addition experiments indicated that the 4-oxoquinoline derivative remains its anti-HIV-1 activity even after the viral integration stage. Furthermore, the compounds significantly suppressed p24 antigen production in HIV-1 latently infected cells exposed with tumor necrosis factor alpha. These findings suggest that our 4-oxoquinoline derivatives with no 3-carboxylate moiety may become novel lead compounds in the development of anti-HIV-1 drugs.


Assuntos
4-Quinolonas/farmacologia , 4-Quinolonas/farmacocinética , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/farmacocinética , HIV-1/efeitos dos fármacos , Animais , Descoberta de Drogas , Células HEK293 , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas
10.
Nucleic Acids Res ; 46(19): 10368-10379, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30060196

RESUMO

APOBEC3H (A3H) is a mammal-specific cytidine deaminase that potently restricts the replication of retroviruses. Primate A3Hs are known to exert key selective pressures against the cross-species transmission of primate immunodeficiency viruses from chimpanzees to humans. Despite recent advances, the molecular structures underlying the functional mechanisms of primate A3Hs have not been fully understood. Here, we reveal the 2.20-Å crystal structure of the chimpanzee A3H (cpzA3H) dimer bound to a short double-stranded RNA (dsRNA), which appears to be similar to two recently reported structures of pig-tailed macaque A3H and human A3H. In the structure, the dsRNA-binding interface forms a specialized architecture with unique features. The analysis of the dsRNA nucleotides in the cpzA3H complex revealed the GC-rich palindrome-like sequence preference for dsRNA interaction, which is largely determined by arginine residues in loop 1. In cells, alterations of the cpzA3H residues critical for the dsRNA interaction severely reduce intracellular protein stability due to proteasomal degradation. This suggests that cpzA3H stability is regulated by the dsRNA-mediated dimerization as well as by unknown cellular machinery through proteasomal degradation in cells. Taken together, these findings highlight unique structural features of primate A3Hs that are important to further understand their cellular functions and regulation.


Assuntos
Aminoidrolases/química , Citidina Desaminase/química , Pan troglodytes/genética , RNA de Cadeia Dupla/química , Sequência de Aminoácidos/genética , Aminoidrolases/genética , Animais , Citidina Desaminase/genética , Dimerização , HIV-1/genética , HIV-1/patogenicidade , Humanos , Macaca nemestrina/genética , RNA de Cadeia Dupla/genética , Replicação Viral/genética
11.
Parasitol Int ; 67(2): 203-208, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29217416

RESUMO

The target molecules of antibodies against falciparum malaria remain largely unknown. Recently we have identified multiple proteins as targets of immunity against Plasmodium falciparum using African serum samples. To investigate whether potential targets of clinical immunity differ with transmission intensity, we assessed immune responses in residents of low malaria transmission region in Thailand. Malaria asymptomatic volunteers (Asy: n=19) and symptomatic patients (Sym: n=21) were enrolled into the study. Serum immunoreactivity to 186 wheat germ cell-free system (WGCFS)-synthesized recombinant P. falciparum asexual-blood stage proteins were determined by AlphaScreen, and subsequently compared between the study groups. Forty proteins were determined as immunoreactive with antibody responses to 35 proteins being higher in Asy group than in Sym group. Among the 35 proteins, antibodies to MSP3, MSPDBL1, RH2b, and MSP7 were significantly higher in Asy than Sym (unadjusted p<0.005) suggesting these antigens may have a protective role in clinical malaria. MSP3 reactivity remained significantly different between Asy and Sym groups even after multiple comparison adjustments (adjusted p=0.033). Interestingly, while our two preceding studies using African sera were conducted differently (e.g., cross-sectional vs. longitudinal design, observed clinical manifestation vs. functional activity), those studies similarly identified MSP3 and MSPDBL1 as potential targets of protective immunity. This study further provides a strong rationale for the application of WGCFS-based immunoprofiling to malaria vaccine candidate and biomarker discovery even in low or reduced malaria transmission settings.


Assuntos
Antígenos de Protozoários/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Plasmodium falciparum/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/isolamento & purificação , Adolescente , Adulto , Antígenos de Protozoários/sangue , Antígenos de Protozoários/isolamento & purificação , Infecções Assintomáticas/epidemiologia , Criança , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Malária Falciparum/sangue , Malária Falciparum/imunologia , Masculino , Proteínas de Membrana/sangue , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/sangue , Proteínas Recombinantes/imunologia , Tailândia/epidemiologia , Triticum/imunologia , Adulto Jovem
12.
J Virol ; 90(2): 1034-47, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537685

RESUMO

UNLABELLED: The HIV-1 Vif protein inactivates the cellular antiviral cytidine deaminase APOBEC3F (A3F) in virus-infected cells by specifically targeting it for proteasomal degradation. Several studies identified Vif sequence motifs involved in A3F interaction, whereas a Vif-binding A3F interface was proposed based on our analysis of highly similar APOBEC3C (A3C). However, the structural mechanism of specific Vif-A3F recognition is still poorly understood. Here we report structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Alanine-scanning analysis of Vif revealed that six residues located within the conserved Vif F1-, F2-, and F3-box motifs are essential for both A3C and A3F degradation, and an additional four residues are uniquely required for A3F degradation. Modeling of the Vif structure on an HIV-1 Vif crystal structure revealed that three discontinuous flexible loops of Vif F1-, F2-, and F3-box motifs sterically cluster to form a flexible A3F interaction interface, which represents hydrophobic and positively charged surfaces. We found that the basic Vif interface patch (R17, E171, and R173) involved in the interactions with A3C and A3F differs. Furthermore, our crystal structure determination and extensive mutational analysis of the A3F C-terminal domain demonstrated that the A3F interface includes a unique acidic stretch (L291, A292, R293, and E324) crucial for Vif interaction, suggesting additional electrostatic complementarity to the Vif interface compared with the A3C interface. Taken together, these findings provide structural insights into the A3F-Vif interaction mechanism, which will provide an important basis for development of novel anti-HIV-1 drugs using cellular cytidine deaminases. IMPORTANCE: HIV-1 Vif targets cellular antiviral APOBEC3F (A3F) enzyme for degradation. However, the details on the structural mechanism for specific A3F recognition remain unclear. This study reports structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Three discontinuous sequence motifs of Vif, F1, F2, and F3 boxes, assemble to form an A3F interaction interface. In addition, we determined a crystal structure of the wild-type A3F C-terminal domain responsible for the Vif interaction. These results demonstrated that both electrostatic and hydrophobic interactions are the key force driving Vif-A3F binding and that the Vif-A3F interfaces are larger than the Vif-A3C interfaces. These findings will allow us to determine the configurations of the Vif-A3F complex and to construct a structural model of the complex, which will provide an important basis for inhibitor development.


Assuntos
Citosina Desaminase/química , Citosina Desaminase/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Cristalografia por Raios X , Citidina Desaminase/química , Citidina Desaminase/metabolismo , Análise Mutacional de DNA , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteólise , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
13.
Front Microbiol ; 6: 1258, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617593

RESUMO

Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevolution mechanisms. Here, to obtain HIV-1 genome sequence information that includes minority variants, we sought to develop a method for evaluating quasispecies throughout the HIV-1 near-full-length genome using the Illumina MiSeq benchtop deep sequencer. To ensure the reliability of minority mutation detection, we applied an analysis method of sequence read mapping onto a consensus sequence derived from de novo assembly followed by iterative mapping and subsequent unique error correction. Deep sequencing analyses of aHIV-1 clone showed that the analysis method reduced erroneous base prevalence below 1% in each sequence position and discarded only < 1% of all collected nucleotides, maximizing the usage of the collected genome sequences. Further, we designed primer sets to amplify the HIV-1 near-full-length genome from clinical plasma samples. Deep sequencing of 92 samples in combination with the primer sets and our analysis method provided sufficient coverage to identify >1%-frequency sequences throughout the genome. When we evaluated sequences of pol genes from 18 treatment-naïve patients' samples, the deep sequencing results were in agreement with Sanger sequencing and identified numerous additional minority mutations. The results suggest that our deep sequencing method would be suitable for identifying within-host viral population dynamics throughout the genome.

14.
Antiviral Res ; 119: 84-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956162

RESUMO

Integrase strand transfer inhibitors (INSTIs), which block proviral DNA integration into the host chromosome, are clinically effective against HIV-1 isolates exhibiting resistance to other classes of antiretroviral agents. Although naturally occurring amino acid variation has been less frequently observed in the integrase region, the functional constraints of this variation on primary INSTI resistance-associated mutations are not fully understood. In the present study, we focused on the S119G/R/P/T (S119X) polymorphisms, which are frequently observed in HIV-1 sequences derived from clinical specimens (naïve, n=458, 26%). The frequency of the S119X polymorphism together with Q148H/R (n=8, 63%) or N155H (n=12, 83%) was relatively high compared with that of naïve group. Our in vitro assays revealed that S119G/P/T alone exerted no effect on the susceptibility to INSTIs, whereas S119R enhanced the level of INSTI resistance induced by well-known INSTI resistance-associated mutations (Y143C, Q148H or N155H). Notably, the S119R polymorphism contributed to a significant (5.9-fold) increase in dolutegravir resistance caused by G140S/Q148H. Analysis of two cases of virological failure during raltegravir-based therapy showed that the accumulation and the rapid evolution of primary INSTI resistance-associated mutations coincided with the S119R mutation. These data highlight the role of the S119X polymorphism in INSTI resistance, and this polymorphism might be linked to the potential treatment outcome with INSTI-based therapy.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/genética , Polimorfismo Genético , Sequência de Aminoácidos , Genótipo , Integrase de HIV/química , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/efeitos dos fármacos , HIV-1/genética , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Oxazinas , Piperazinas , Piridonas , Raltegravir Potássico/farmacologia , Raltegravir Potássico/uso terapêutico , Resultado do Tratamento , Vírion
15.
Mol Biosyst ; 11(2): 361-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25431973

RESUMO

Using a wheat germ cell-free protein synthesis system, we developed a high-throughput method for the synthesis of stable isotope-labeled full-length transmembrane proteins as proteoliposomes to mimic the in vivo environment, and we successfully constructed an internal standard library for targeted transmembrane proteomics by using mass spectrometry.


Assuntos
Marcação por Isótopo/métodos , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Proteômica/métodos , Triticum/química , Sequência de Aminoácidos , Animais , Sistema Livre de Células , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Receptores de Neurotransmissores/metabolismo
16.
Ann Surg Oncol ; 21 Suppl 3: S459-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24585405

RESUMO

BACKGROUND: Although autoantibodies to cancer antigens are candidates for biomarkers, no comprehensive studies to detect cancer-specific antibodies have been performed. This study identified autoantibodies in the sera of pancreatic cancer (PC) patients using proteomics based on a wheat germ cell-free protein production system. METHODS: We constructed a biotinylated protein library of 2,183 genes. Interactions between biotinylated proteins and serum antibodies were detected by AlphaScreen® assay. Relative luminescence signals of each protein in 37 PC patients and 20 healthy controls were measured, and their sensitivity and specificity for PC were calculated. RESULTS: Luminescence signals of nine proteins were significantly higher than those of healthy controls, with calcium and integrin binding 1 (CIB1) protein showing the greatest significance (p = 0.002). Sensitivity, specificity, positive predictive value and negative predictive value of CIB1 autoantibody alone for PC were 76, 70, 82, and 61 %, respectively, and 97, 35, 74, and 88 %, respectively, when the four most significant proteins were combined. Presence of these autoantibodies did not vary significantly with other clinicopathological characteristics. CONCLUSION: Several autoantibodies, including CIB1, are potential biomarkers for PC.


Assuntos
Antígenos de Neoplasias/imunologia , Autoanticorpos/sangue , Biomarcadores Tumorais/sangue , Proteínas de Ligação ao Cálcio/sangue , Neoplasias Pancreáticas/sangue , Adulto , Idoso , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/imunologia , Prognóstico , Sensibilidade e Especificidade
17.
PLoS One ; 9(3): e92861, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667791

RESUMO

OBJECTIVE: The human APOBEC3 family of proteins potently restricts HIV-1 replication APOBEC3B, one of the family genes, is frequently deleted in human populations. Two previous studies reached inconsistent conclusions regarding the effects of APOBEC3B loss on HIV-1 acquisition and pathogenesis. Therefore, it was necessary to verify the effects of APOBEC3B on HIV-1 infection in vivo. METHODS: Intact (I) and deletion (D) polymorphisms of APOBEC3B were analyzed using PCR. The syphilis, HBV and HCV infection rates, as well as CD4(+) T cell counts and viral loads were compared among three APOBEC3B genotype groups (I/I, D/I, and D/D). HIV-1 replication kinetics was assayed in vitro using primary cells derived from PBMCs. RESULTS: A total of 248 HIV-1-infected Japanese men who have sex with men (MSM) patients and 207 uninfected Japanese MSM were enrolled in this study. The genotype analysis revealed no significant differences between the APOBEC3B genotype ratios of the infected and the uninfected cohorts (p = 0.66). In addition, HIV-1 disease progression parameters were not associated with the APOBEC3B genotype. Furthermore, the PBMCs from D/D and I/I subjects exhibited comparable HIV-1 susceptibility. CONCLUSION: Our analysis of a population-based matched cohort suggests that the antiviral mechanism of APOBEC3B plays only a negligible role in eliminating HIV-1 in vivo.


Assuntos
Citidina Desaminase/genética , Predisposição Genética para Doença , Infecções por HIV/genética , HIV-1 , Polimorfismo Genético , Adulto , Povo Asiático , Estudos de Coortes , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor
18.
FASEB J ; 27(9): 3437-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23699176

RESUMO

Atherosclerotic diseases, such as coronary artery disease and peripheral artery disease, are systemic disorders and among the leading causes of mortality and morbidity throughout the world. However, the exact pathophysiological mechanisms underlying the development of atherosclerosis remain unknown; currently, atherosclerosis is thought to involve an inflammatory process. Systemic inflammatory reactions and accumulation of immune cells in atherosclerotic lesions in situ are considered essential. We have comprehensively analyzed autoantibodies in patients with atherosclerosis by means of a newly developed high-throughput autoantibody analysis system. A wide range of autoantibodies was found in sera from patients with atherosclerosis. After we statistically analyzed the titers of each autoantibody with conventional techniques, the results underwent text-mining analyses based on natural language processing. Combinatory analysis revealed a close association between anti-interleukin (IL)-5 antibody and atherosclerosis. Titers of anti-IL-5 antibodies and serum IL-5 concentrations were also closely associated with other risk factors, such as low-density lipoprotein cholesterol, serum creatinine, fasting plasma glucose, gender, and age, suggesting that suppressed IL-5 function mediated by autoantibodies in patients with atherosclerosis plays an important role in the disease process. To validate the clinical significance of these findings, we computed the specificity and sensitivity of titers of anti-IL-5 autoantibodies for human atherosclerosis. When antibody titers of 1.49 were assumed to predict the presence of atherosclerosis, the sensitivity was 95.0% and the specificity 91.0%, with an area under the curve of 0.940. Our results provide important clues to understanding the role of autoantibody-mediated immune reactions in human atherosclerosis and suggest novel therapeutic opportunities for management of the disease.


Assuntos
Aterosclerose/sangue , Aterosclerose/imunologia , Autoanticorpos/sangue , Interleucina-5/sangue , Interleucina-5/imunologia , Idoso , LDL-Colesterol/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/imunologia , Feminino , Humanos , Masculino , Doença Arterial Periférica/sangue , Doença Arterial Periférica/imunologia
19.
J Immunol Methods ; 387(1-2): 57-70, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23044167

RESUMO

Synovial tissue in rheumatoid arthritis (RA) shows dense infiltration of plasmacytes. The purpose of the present study is to identify and localize autoantibodies produced in these immunocytes in RA synovitis. We developed a novel screening system for detecting specific autoantigens. Protein antigens recognized by antibodies in the serum and synovial tissue extract from five RA patients were screened with the AlphaScreen method. For screening, a biotinylated human autoantigen library was constructed by the wheat germ cell-free protein synthesis system. The AlphaScreen analysis of 2183 proteins detected a limited number of antigens reactive with the serum and synovial tissue extract. Eighteen biotinylated proteins, containing top five showing high signals in each synovitis tissue extract, were utilized as probes for the enzyme-labeled antigen method, in order to visualize the site of specific antibody production in synovial lesions. Specific antibodies against two proteins, tripartite motif-containing 21 (TRIM21, also known as SSA/Ro52) and F-box only protein 2 (FBXO2), were visualized in the cytoplasm of plasmacytes in two RA synovitis lesions, respectively. Absorption experiments using unlabeled proteins confirmed the specificity of staining. No positive signals against these two proteins were identified in the additionally evaluated RA and osteoarthritis synovial lesions. The present study indicated 1) the usefulness of screening the human autoantigen library with the AlphaScreen assay for detecting autoantibodies in RA synovitis, and 2) the applicability of biotinylated proteins to the enzyme-labeled antigen method for visualizing the site of autoantibody production within the lesion.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Técnicas Imunoenzimáticas/métodos , Sinovite/imunologia , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/sangue , Artrite Reumatoide/genética , Autoanticorpos/sangue , Autoantígenos/genética , Autoantígenos/metabolismo , Biotinilação , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Citoplasma/imunologia , Citoplasma/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/imunologia , Proteínas F-Box/metabolismo , Feminino , Biblioteca Gênica , Humanos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Plasmócitos/patologia , Reprodutibilidade dos Testes , Ribonucleoproteínas/genética , Ribonucleoproteínas/imunologia , Ribonucleoproteínas/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinovite/sangue , Sinovite/genética
20.
AIDS Res Ther ; 9(1): 34, 2012 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-23181827

RESUMO

INTRODUCTION: Human APOBEC3G is a host defense factor that potently inhibits HIV replication. We hypothesize that HIV-infected children with a genetic variant of APOBEC3G will have a more rapid disease progression. METHODS: Antiretroviral therapy (ART)-naïve children, aged 1-12 years old with CD4 15-24% and without severe HIV-related symptoms were enrolled. The children had CD4% and absolute CD4 counts every 12 weeks and HIV-RNA every 24 weeks until 144 weeks. ART was started when CD4% declined to < 15% or AIDS-related events developed.APOBEC3G genetic variants were performed by PCR-based restriction fragment length polymorphism techniques from peripheral blood mononuclear cells. Random-effect linear regression analysis was performed to correlate APOBEC3G genotypes and disease progression. RESULTS: 147 children, 35% male, with a median (IQR) age of 6.5 (4.3-8.8) years were enrolled. CDC N:A:B were 1:63:36%. Median baseline values were 20% for CD4% 605 cells/mm3 for CD4 count and 4.7 log10copies/mL for HIV-RNA.The frequencies of APOBEC3G genotypes AA (186H/H), AG (186H/R), GG (186R/R) were 86%, 12%, and 2% respectively. The APOBEC3G genotype GG was associated with a significant decline in CD4% -5.1% (-8.9 to -1.2%), p<0.001, and CD4 counts -226 (-415 to -34) cells/mm3, p<0.001 by random-effect liner regression analysis. No significant associations of APOBEC3G genotypes with HIV-RNA changes overtime (p=0.16) or progression to CDC B and C (p=0.49) were observed. CONCLUSIONS: APOBEC3G genotype GG was significantly associated with a more rapid decline in CD4. APOBEC3G's antiviral effects on HIV disease progression in children should be further explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...