Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 44(2): 522-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24851926

RESUMO

The local structure of molten LaF3-LiF-Li2O has been investigated by high temperature NMR spectroscopy. The (139)La and (19)F chemical shifts have been measured as a function of temperature and composition. The NMR spectra show that Li2O reacts completely with LaF3 to form a LaOF compound in the solid state below the melting temperature of the sample. LaOF is not completely dissolved in the fluoride melt and solid LaOF is observed in the (19)F spectra for Li2O concentrations above 10 mol%. We discuss the local environment of lanthanum ions in molten LaF3-LiF-Li2O and compare the results to those with the LaF3-LiF-CaO system. The analysis of the temperature and Li2O concentration dependences of the (139)La and (19)F chemical shifts suggests that several kinds of lanthanum oxyfluoride long-lived LaOxFy(3-x-y) units are present in the melt.

2.
J Phys Chem B ; 115(29): 9160-7, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21675783

RESUMO

The structure of AF-ZrF(4) system (A(+) = Li(+), Na(+), K(+)) compounds in the liquid state is studied using an approach combining EXAFS spectroscopy with molecular dynamics simulations. A very good agreement is observed between the two techniques, which allows us to propose a quantitative description of the liquids. From the Zr(4+) solvation shell point of view, we observe a progressive stabilization of the 7-fold and then of the 6-fold coordinated complexes when passing from Li(+) to Na(+) and K(+) as a "counterion". Particular attention is given to the systems consisting of 35 mol % of ZrF(4). At that particular composition, the ZrF(6)(2-) complex predominates largely whatever the nature of the alkali. The calculated vibrational properties of this complex are in excellent agreement with a previous Raman spectroscopy experiment on molten KF-ZrF(4). The most important differences are observed for the lifetime of these octahedral units, which increases importantly with the size of the monovalent cation. On a larger scale, an intense first sharp diffraction peak is observed for the Zr(4+)-Zr(4+) partial structure factor, which can be attributed to the correlations between the octahedral units formed.

3.
J Phys Chem B ; 114(19): 6472-9, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20423090

RESUMO

We propose in this paper an original approach to study the structure of the molten LiF-ZrF(4) system up to 50 mol % ZrF(4), combining high-temperature nuclear magnetic resonance (NMR) and extended X-ray absorption fine structure (EXAFS) experiments with molecular dynamics (MD) calculations. (91)Zr high-temperature NMR experiments give an average coordination of 7 for the zirconium ion on all domains of composition. MD simulations, in agreement with EXAFS experiments at the K-edge of Zr, provide evidence for the coexistence of three different Zr-based complexes, [ZrF(6)](2-), [ZrF(7)](3-), and [ZrF(8)](4-), in the melt; the evolution of the concentration of these species upon addition of ZrF(4) is quantified. Smooth variations are observed, apart from a given composition at 35 mol % ZrF(4), for which an anomalous point is observed. Concerning the anion coordination, we observe a predominance of free fluorides at low concentrations in ZrF(4), and an increase of the number of bridging fluoride ions between complexes with addition of ZrF(4).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...