Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354737

RESUMO

Actively maintained close appositions between organelle membranes, also known as contact sites, enable the efficient transfer of biomolecules between cellular compartments. Several such sites have been described as well as their tethering machineries. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize contact site proteomes, we established a high-throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, several of which are poorly characterized, on the background of 1165 strains expressing a mCherry-tagged yeast protein that has a cellular punctate distribution (a hallmark of contact sites), under regulation of the strong TEF2 promoter. By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified three homologs of Vps13 and Atg2 that are residents of multiple contact sites. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell. Overall, our analysis expands the universe of contact site residents and effectors and creates a rich database to mine for new functions, tethers, and regulators.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Gotículas Lipídicas/metabolismo , Ergosterol , Lipídeos , Proteínas Relacionadas à Autofagia/metabolismo
2.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34196665

RESUMO

The ER is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for maintaining ER homeostasis. Aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR. How the distinct signals from lipid bilayer stress and unfolded proteins are processed by the conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine cross-linking experiments in native membranes to establish its transmembrane architecture in signaling-active clusters. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration independent of the primary cause for ER stress. This suggests that different forms of stress converge in a common, signaling-active transmembrane architecture of Ire1.


Assuntos
Estresse do Retículo Endoplasmático , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas , Cisteína , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Microscopia Confocal , Microscopia de Fluorescência , Modelos Moleculares , Mutação , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
3.
Front Cell Dev Biol ; 8: 756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850859

RESUMO

The unfolded protein response (UPR) is central to endoplasmic reticulum (ER) homeostasis by controlling its size and protein folding capacity. When activated by unfolded proteins in the ER-lumen or aberrant lipid compositions, the UPR adjusts the expression of hundreds of target genes to counteract ER stress. The proteotoxic drugs dithiothreitol (DTT) and tunicamycin (TM) are commonly used to induce misfolding of proteins in the ER and to study the UPR. However, their potential impact on the cellular lipid composition has never been systematically addressed. Here, we report the quantitative, cellular lipid composition of Saccharomyces cerevisiae during acute, proteotoxic stress in both rich and synthetic media. We show that DTT causes rapid remodeling of the lipidome when used in rich medium at growth-inhibitory concentrations, while TM has only a marginal impact on the lipidome under our conditions of cultivation. We formulate recommendations on how to study UPR activation by proteotoxic stress without interferences from a perturbed lipid metabolism. Furthermore, our data suggest an intricate connection between the cellular growth rate, the abundance of the ER, and the metabolism of fatty acids. We show that Saccharomyces cerevisiae can produce asymmetric lipids with two saturated fatty acyl chains differing substantially in length. These observations indicate that the pairing of saturated fatty acyl chains is tightly controlled and suggest an evolutionary conservation of asymmetric lipids and their biosynthetic machineries.

4.
J Biotechnol ; 294: 38-48, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30771444

RESUMO

Over the past decades, Bacillus megaterium has gained significant interest in the biotechnological industry due to its high capacity for protein production. Although many proteins have been expressed efficiently using the optimized xylose inducible system so far, there is a considerable demand for novel promoters with varying activities, particularly for the adjustment of protein levels in multi-enzyme cascades. Genome-wide microarray analyses of the industrially important B. megaterium strain MS941 were applied to identify constitutive and growth phase dependent promoters for the expression of heterologous proteins from the early exponential to the early stationary phase of bacterial growth. Fifteen putative promoter elements were selected based on differential gene expression profiles and signal intensities of the generated microarray data. The corresponding promoter activities were evaluated in B. megaterium via ß-galactosidase screening. ß-Galactosidase expression levels ranged from 15% to 130% compared to the optimized xylose inducible promoter. Apart from these constitutive promoters we also identified and characterized novel inducible promoters, which were regulated by the addition of arabinose, galactose and the commonly used allolactose analog IPTG. The potential application of the identified promoters for biotechnologically relevant processes was demonstrated by overexpression of the cholesterol oxidase II from Brevibacterium sterolicum, thus obtaining product yields of up to 1.13 g/l/d. The provided toolbox of novel promoters offers versatile promoter strengths and will significantly contribute to harmonize protein expression in synthetic metabolic pathways, thereby pushing forward the engineering of B. megaterium as microbial cell factory for the biosynthesis and conversion of valuable compounds.


Assuntos
Bacillus megaterium/genética , Regiões Promotoras Genéticas , Bacillus megaterium/metabolismo , Colesterol Oxidase , Genoma Bacteriano , Engenharia Metabólica , Análise de Sequência com Séries de Oligonucleotídeos , Pregnenolona/metabolismo , Progesterona/metabolismo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...