Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25375596

RESUMO

Employing a simple ideal magnetohydrodynamic model in spherical geometry, we show that the presence of either rotation or finite magnetic helicity is sufficient to induce dynamical reversals of the magnetic dipole moment. The statistical character of the model is similar to that of terrestrial magnetic field reversals, with the similarity being stronger when rotation is present. The connection between long-time correlations, 1/f noise, and statistics of reversals is supported, consistent with earlier suggestions.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 2): 066318, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21797488

RESUMO

This paper shows the connection between three previously observed but seemingly unrelated phenomena in hydrodynamic (HD) and magnetohydrodynamic (MHD) turbulent flows, involving the emergence of fluctuations occurring on very long time scales: the low-frequency 1/f noise in the power frequency spectrum, the delayed ergodicity of complex valued amplitude fluctuations in wave number space, and the spontaneous flippings or reversals of large-scale fields. Direct numerical simulations of ideal MHD and HD are employed in three space dimensions, at low resolution, for long periods of time, and with high accuracy to study several cases: different geometries, presence of rotation and/or a uniform magnetic field, and different values of the associated conserved global quantities. It is conjectured that the origin of all these long-time phenomena is rooted in the interaction of the longest wavelength fluctuations available to the system, with fluctuations at much smaller scales. The strength of this nonlocal interaction is controlled either by the existence of conserved global quantities with a back-transfer in Fourier space or by the presence of a slow manifold in the dynamics.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(1 Pt 2): 016309, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21405776

RESUMO

We examine long-time properties of the ideal dynamics of three-dimensional flows, in the presence or not of an imposed solid-body rotation and with or without helicity (velocity-vorticity correlation). In all cases, the results agree with the isotropic predictions stemming from statistical mechanics. No accumulation of excitation occurs in the large scales, although, in the dissipative rotating case, anisotropy and accumulation, in the form of an inverse cascade of energy, are known to occur. We attribute this latter discrepancy to the linearity of the term responsible for the emergence of inertial waves. At intermediate times, inertial energy spectra emerge that differ somewhat from classical wave-turbulence expectations and with a trace of large-scale excitation that goes away for long times. These results are discussed in the context of partial two dimensionalization of the flow undergoing strong rotation as advocated by several authors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA