Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 392-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409806

RESUMO

A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.


Assuntos
Ecossistema , Fósseis , Ecologia , Plantas , Fenótipo
2.
Sci Adv ; 10(1): eadi9171, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181074

RESUMO

Reducing the form factor while retaining the radiation hardness and performance matrix is the goal of avionics. While a compromise between a transistor's size and its radiation hardness has reached consensus in microelectronics, the size-performance balance for their optical counterparts has not been quested but eventually will limit the spaceborne photonic instruments' capacity to weight ratio. Here, we performed space experiments of photonic integrated circuits (PICs), revealing the critical roles of energetic charged particles. The year-long cosmic radiation exposure does not change carrier mobility but reduces free carrier lifetime, resulting in unchanged electro-optic modulation efficiency and well-expanded optoelectronic bandwidth. The diversity and statistics of the tested PIC modulator indicate the minimal requirement of shielding for PIC transmitters with small footprint modulators and complexed routing waveguides toward lightweight space terminals for terabits communications and intersatellite ranging.

3.
Phys Rev Lett ; 131(22): 225201, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101349

RESUMO

A novel multispacecraft technique applied to Magnetospheric Multiscale Mission data in the Earth's magnetosheath enables evaluation of the energy cascade rate from the full Yaglom's equation. The method differs from existing approaches in that it (i) is inherently three-dimensional, (ii) provides a statistically significant number of estimates from a single data stream, and (iii) allows visualization of energy flux in turbulent plasmas. This new "lag polyhedral derivative ensemble" technique exploits ensembles of tetrahedra in lag space and established curlometerlike algorithms.

5.
Rev Mod Plasma Phys ; 6(1): 41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437822

RESUMO

The solar wind, a continuous flow of plasma from the sun, not only shapes the near Earth space environment but also serves as a natural laboratory to study plasma turbulence in conditions that are not achievable in the lab. Starting with the Mariners, for more than five decades, multiple space missions have enabled in-depth studies of solar wind turbulence. Parker Solar Probe (PSP) was launched to explore the origins and evolution of the solar wind. With its state-of-the-art instrumentation and unprecedented close approaches to the sun, PSP is starting a new era of inner heliospheric exploration. In this review we discuss observations of turbulent energy flow across scales in the inner heliosphere as observed by PSP. After providing a quick theoretical overview and a quick recap of turbulence before PSP, we discuss in detail the observations of energy at various scales on its journey from the largest scales to the internal degrees of freedom of the plasma. We conclude with some open ended questions, many of which we hope that PSP will help answer.

6.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34635589

RESUMO

The distribution of forest cover alters Earth surface mass and energy exchange and is controlled by physiology, which determines plant environmental limits. Ancient plant physiology, therefore, likely affected vegetation-climate feedbacks. We combine climate modeling and ecosystem-process modeling to simulate arboreal vegetation in the late Paleozoic ice age. Using GENESIS V3 global climate model simulations, varying pCO2, pO2, and ice extent for the Pennsylvanian, and fossil-derived leaf C:N, maximum stomatal conductance, and specific conductivity for several major Carboniferous plant groups, we simulated global ecosystem processes at a 2° resolution with Paleo-BGC. Based on leaf water constraints, Pangaea could have supported widespread arboreal plant growth and forest cover. However, these models do not account for the impacts of freezing on plants. According to our interpretation, freezing would have affected plants in 59% of unglaciated land during peak glacial periods and 73% during interglacials, when more high-latitude land was unglaciated. Comparing forest cover, minimum temperatures, and paleo-locations of Pennsylvanian-aged plant fossils from the Paleobiology Database supports restriction of forest extent due to freezing. Many genera were limited to unglaciated land where temperatures remained above -4 °C. Freeze-intolerance of Pennsylvanian arboreal vegetation had the potential to alter surface runoff, silicate weathering, CO2 levels, and climate forcing. As a bounding case, we assume total plant mortality at -4 °C and estimate that contracting forest cover increased net global surface runoff by up to 6.1%. Repeated freezing likely influenced freeze- and drought-tolerance evolution in lineages like the coniferophytes, which became increasingly dominant in the Permian and early Mesozoic.


Assuntos
Árvores/fisiologia , Clima , Mudança Climática , Modelos Climáticos , Conservação dos Recursos Naturais/métodos , Ecossistema , Florestas , Fósseis , Hidrologia , Plantas
7.
PLoS One ; 15(9): e0238589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881951

RESUMO

Scanning electron microscopy (SEM) is widely used to investigate the surface morphology, and physiological state of plant leaves. Conventionally used methods for sample preparation are invasive, irreversible, require skill and expensive equipment, and are time and labor consuming. This study demonstrates a method to obtain in vivo surface information of plant leaves by imaging replicas with SEM that is rapid and non-invasive. Dental putty was applied to the leaves for 5 minutes and then removed. Replicas were then imaged with SEM and compared to fresh leaves, and leaves that were processed conventionally by chemical fixation, dehydration and critical point drying. The surface structure of leaves was well preserved on the replicas. The outline of epidermal as well as guard cells could be clearly distinguished enabling determination of stomatal density. Comparison of the dimensions of guard cells revealed that replicas did not differ from fresh leaves, while conventional sample preparation induced strong shrinkage (-40% in length and -38% in width) of the cells when compared to guard cells on fresh leaves. Tilting the replicas enabled clear measurement of stomatal aperture dimensions. Summing up, the major advantages of this method are that it is inexpensive, non-toxic, simple to apply, can be performed in the field, and that results on stomatal density and in vivo stomatal dimensions in 3D can be obtained in a few minutes.


Assuntos
Folhas de Planta/ultraestrutura , Estômatos de Plantas/ultraestrutura , Microscopia Eletrônica de Varredura , Folhas de Planta/anatomia & histologia , Polivinil/química , Siloxanas/química , Nicotiana/anatomia & histologia
8.
Phys Rev Lett ; 124(25): 255101, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639771

RESUMO

A familiar problem in space and astrophysical plasmas is to understand how dissipation and heating occurs. These effects are often attributed to the cascade of broadband turbulence which transports energy from large scale reservoirs to small scale kinetic degrees of freedom. When collisions are infrequent, local thermodynamic equilibrium is not established. In this case the final stage of energy conversion becomes more complex than in the fluid case, and both pressure-dilatation and pressure strain interactions (Pi-D≡-Π_{ij}D_{ij}) become relevant and potentially important. Pi-D in plasma turbulence has been studied so far primarily using simulations. The present study provides a statistical analysis of Pi-D in the Earth's magnetosheath using the unique measurement capabilities of the Magnetospheric Multiscale (MMS) mission. We find that the statistics of Pi-D in this naturally occurring plasma environment exhibit strong resemblance to previously established fully kinetic simulations results. The conversion of energy is concentrated in space and occurs near intense current sheets, but not within them. This supports recent suggestions that the chain of energy transfer channels involves regional, rather than pointwise, correlations.

9.
Phys Rev Lett ; 124(22): 225101, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567898

RESUMO

We present estimates of the turbulent energy-cascade rate derived from a Hall-magnetohydrodynamic (MHD) third-order law. We compute the contribution from the Hall term and the MHD term to the energy flux. Magnetospheric Multiscale (MMS) data accumulated in the magnetosheath and the solar wind are compared with previously established simulation results. Consistent with the simulations, we find that at large (MHD) scales, the MMS observations exhibit a clear inertial range dominated by the MHD flux. In the subion range, the cascade continues at a diminished level via the Hall term, and the change becomes more pronounced as the plasma beta increases. Additionally, the MHD contribution to interscale energy transfer remains important at smaller scales than previously thought. Possible reasons are offered for this unanticipated result.

10.
Phys Rev E ; 97(5-1): 053211, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906872

RESUMO

Based on the Langevin equation of Brownian motion, we present a simple model that emulates a typical mode in incompressible magnetohydrodynamic turbulence, providing a demonstration of several key properties. The model equation is consistent with von Kármán decay law and Kolmogorov's symmetries. We primarily focus on the behavior of inertial range modes, although we also attempt to include some properties of the large-scale modes. Dissipation scales are not considered. Results from the model are compared with results from published direct numerical simulations.

11.
Phys Rev E ; 93(6): 061102, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415197

RESUMO

We investigate energy transfer across scales in three-dimensional compressible magnetohydrodynamic (MHD) turbulence, a model often used to study space and astrophysical plasmas. Analysis shows that kinetic and magnetic energies cascade conservatively from large to small scales in cases with varying degrees of compression. With more compression, energy fluxes due to pressure dilation and subscale mass flux are greater, but conversion between kinetic and magnetic energy by magnetic line stretching is less efficient. Energy transfer between the same fields is dominated by local contributions regardless of compressive effects. In contrast, the conversion between kinetic and internal energy by pressure dilation is dominated by the largest scale contributions. Energy conversion between the velocity and magnetic fields is weakly local.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(5 Pt 2): 056407, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15244951

RESUMO

In helical hydromagnetic turbulence with an imposed magnetic field (which is constant in space and time) the magnetic helicity of the field within a periodic domain is no longer an invariant of the ideal equations. Alternatively, there is a generalized magnetic helicity that is an invariant of the ideal equations. It is shown that this quantity is not gauge invariant and that it can therefore not be used in practice. Instead, the evolution equation of the magnetic helicity of the field describing the deviation from the imposed field is shown to be a useful tool. It is demonstrated that this tool can determine steady state quenching of the alpha-effect. A simple three-scale model is derived to describe the evolution of the magnetic helicity and to predict its sign as a function of the imposed field strength. The results of the model agree favorably with simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...