Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38615139

RESUMO

BACKGROUND: Since there are known adverse health impacts of traffic-related air pollution, while at the same time there are potential health benefits from greenness, it is important to examine more closely the impacts of these factors on indoor air quality in urban schools. OBJECTIVE: This study investigates the association of road proximity and urban greenness to indoor traffic-related fine particulate matter (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in inner-city schools. METHODS: PM2.5, NO2, and BC were measured indoors at 74 schools and outdoors at a central urban over a 10-year period. Seasonal urban greenness was estimated using the Normalized Difference Vegetation Index (NDVI) with 270 and 1230 m buffers. The associations between indoor traffic-related air pollution and road proximity and greenness were investigated with mixed-effects models. RESULTS: The analysis showed linear decays of indoor traffic-related PM2.5, NO2, and BC by 60%, 35%, and 22%, respectively for schools located at a greater distance from major roads. The results further showed that surrounding school greenness at 270 m buffer was significantly associated (p < 0.05) with lower indoor traffic-related PM2.5: -0.068 (95% CI: -0.124, -0.013), NO2: -0.139 (95% CI: -0.185, -0.092), and BC: -0.060 (95% CI: -0.115, -0.005). These associations were stronger for surrounding greenness at a greater distance from the schools (buffer 1230 m) PM2.5: -0.101 (95% CI: -0.156, -0.046) NO2: -0.122 (95% CI: -0.169, -0.075) BC: -0.080 (95% CI: -0.136, -0.026). These inverse associations were stronger after fully adjusting for regional pollution and meteorological conditions. IMPACT STATEMENT: More than 90% of children under the age of 15 worldwide are exposed to elevated air pollution levels exceeding the WHO's guidelines. The study investigates the impact that urban infrastructure and greenness, in particular green areas and road proximity, have on indoor exposures to traffic-related PM2.5, NO2, and BC in inner-city schools. By examining a 10-year period the study provides insights for air quality management, into how road proximity and greenness at different buffers from the school locations can affect indoor exposure.

2.
Nat Commun ; 11(1): 447, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992702

RESUMO

Non-methane hydrocarbons (NMHCs) such as ethane and propane are significant atmospheric pollutants and precursors of tropospheric ozone, while the Middle East is a global emission hotspot due to  extensive oil and gas production. Here we compare in situ hydrocarbon measurements, performed around the Arabian Peninsula, with global model simulations that include current emission inventories (EDGAR) and state-of-the-art atmospheric circulation and chemistry mechanisms (EMAC model). While measurements of high mixing ratios over the Arabian Gulf are adequately simulated, strong underprediction by the model was found over the northern Red Sea. By examining the individual sources in the model and by utilizing air mass back-trajectory investigations and Positive Matrix Factorization (PMF) analysis, we deduce that Red Sea Deep Water (RSDW) is an unexpected, potent source of atmospheric NMHCs. This overlooked underwater source is comparable with total anthropogenic emissions from entire Middle Eastern countries, and significantly impacts the regional atmospheric chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...