Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 900: 165537, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37454853

RESUMO

Vehicles are the third most occupied microenvironment, other than home and workplace, in developed urban areas. Vehicle cabins are confined spaces where occupants can mitigate their exposure to on-road nitrogen dioxide (NO2) and fine particulate matter (PM2.5) concentrations. Understanding which parameters exert the greatest influence on in-vehicle exposure underpins advice to drivers and vehicle occupants in general. This study assessed the in-vehicle NO2 and PM2.5 levels and developed stepwise general additive mixed models (sGAMM) to investigate comprehensively the combined and individual influences of factors that influence the in-vehicle exposures. The mean in-vehicle levels were 19 ± 18 and 6.4 ± 2.7 µg/m3 for NO2 and PM2.5, respectively. sGAMM model identified significant factors explaining a large fraction of in-vehicle NO2 and PM2.5 variability, R2 = 0.645 and 0.723, respectively. From the model's explained variability on-road air pollution was the most important predictor accounting for 22.3 and 30 % of NO2 and PM2.5 variability, respectively. Vehicle-based predictors included manufacturing year, cabin size, odometer reading, type of cabin filter, ventilation fan speed power, window setting, and use of air recirculation, and together explained 48.7 % and 61.3 % of NO2 and PM2.5 variability, respectively, with 41.4 % and 51.9 %, related to ventilation preference and type of filtration media, respectively. Driving-based parameters included driving speed, traffic conditions, traffic lights, roundabouts, and following high emitters and accounted for 22 and 7.4 % of in-vehicle NO2 and PM2.5 exposure variability, respectively. Vehicle occupants can significantly reduce their in-vehicle exposure by moderating vehicle ventilation settings and by choosing an appropriate cabin air filter.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio , Emissões de Veículos/análise , Monitoramento Ambiental , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Material Particulado/análise , Exposição Ambiental/análise
2.
Sci Total Environ ; 860: 160395, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36427737

RESUMO

Traffic related nitrogen dioxide (NO2) poses a serious environmental and health risk factor in the urban environment. Drivers and vehicle occupants in general may have acute exposure to NO2 levels. In order to identify key controllable measures to reduce vehicle occupant's exposure, this study measures NO2 exposure inside ten different vehicles under real world driving conditions and applies a targeted intervention by replacing previously used filters with new standard pollen and new activated carbon cabin filters. The study also evaluates the efficiency of the latter as a function of duration of use. The mean in-vehicle NO2 exposure across the tested vehicles, driving the same route under comparable traffic and ambient air quality conditions, was 50.8 ± 32.7 µg/m3 for the new standard pollen filter tests and 9.2 ± 8.6 µg/m3 for the new activated carbon filter tests. When implementing the new activated carbon filters, overall we observed significant (p < 0.05) reductions by 87 % on average (range 80 - 94.2 %) in the in-vehicle NO2 levels compared to the on-road concentrations. We further found that the activated carbon filter NO2 removal efficiency drops by 6.8 ± 0.6 % per month; showing a faster decay in removal efficiency after the first 6 months of use. These results offer novel insights into how the general population can control and reduce their exposure to traffic related NO2. The use and regular replacement of activated carbon cabin air filters represents a relatively inexpensive method to significantly reduce in-vehicle NO2 exposure.


Assuntos
Filtros de Ar , Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Carvão Vegetal , Fatores de Risco , Emissões de Veículos/prevenção & controle , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise
3.
Sci Total Environ ; 835: 155368, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35460767

RESUMO

Traffic-related particulate matter (PM) plays an important role in urban air pollution. However, sources of urban pollution are difficult to distinguish. This study utilises a mobile particle concentrator platform and statistical tools to investigate factors affecting roadway ambient coarse particle (PM10-2.5) and fine particle (PM2.5-0.2) concentrations in greater Boston, USA. Positive matrix factorization (PMF) identified six PM10-2.5 sources (exhaust, road salt, brake wear, regional pollution, road dust resuspension and tyre-road abrasion) and seven fine particle sources. The seven PM2.5-0.2 sources include the six PM10-2.5 sources and a source rich in Cr and Ni. Non- exhaust traffic-related sources together accounted for 65.6% and 29.1% of the PM10-2.5 and PM2.5-0.2 mass, respectively. While the respective contributions of exhaust sources were 10.4% and 20.7%. The biggest non-exhaust contributor in the PM10-2.5 was road dust resuspension, accounting for 29.6%, while for the PM2.5-0.2, the biggest non-exhaust source was road-tyre abrasion, accounting for 12.3%. We used stepwise general additive models (sGAMs) and found statistically significant (p < 0.05) effects of temperature, number of vehicles and rush hour periods on exhaust, brake wear, road dust resuspension and road-tyre abrasion with relative importance between 19.1 and 62.2%, 12.5-42.1% and 4.4-42.2% of the sGAM model's explained variability. Speed limit and road type were also important factors for exhaust, road-tyre and brake wear sources. Meteorological variables of wind speed and relative humidity were significantly associated with both coarse and fine road dust resuspension and had a combined relative importance of 38% and 48%. The quantifying results of the factors that influence traffic-related sources can offer key insights to policies aiming to improve near-road air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poeira/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
4.
Environ Health Perspect ; 130(4): 47005, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446676

RESUMO

BACKGROUND: School classrooms, where students spend the majority of their time during the day, are the second most important indoor microenvironment for children. OBJECTIVE: We investigated factors influencing classroom exposures to fine particulate matter (PM2.5), black carbon (BC), and nitrogen dioxide (NO2) in urban schools in the northeast United States. METHODS: Over the period of 10 y (2008-2013; 2015-2019) measurements were conducted in 309 classrooms of 74 inner-city schools during fall, winter, and spring of the academic period. The data were analyzed using adaptive mixed-effects least absolute shrinkage and selection operator (LASSO) regression models. The LASSO variables included meteorological-, school-, and classroom-based covariates. RESULTS: LASSO identified 10, 10, and 11 significant factors (p<0.05) that were associated with indoor PM2.5, BC, and NO2 exposures, respectively. The overall variability explained by these models was R2=0.679, 0.687, and 0.621 for PM2.5, BC, and NO2, respectively. Of the model's explained variability, outdoor air pollution was the most important predictor, accounting for 53.9%, 63.4%, and 34.1% of the indoor PM2.5, BC, and NO2 concentrations. School-based predictors included furnace servicing, presence of a basement, annual income, building type, building year of construction, number of classrooms, number of students, and type of ventilation that, in combination, explained 18.6%, 26.1%, and 34.2% of PM2.5, BC, and NO2 levels, whereas classroom-based predictors included classroom floor level, classroom proximity to cafeteria, number of windows, frequency of cleaning, and windows facing the bus area and jointly explained 24.0%, 4.2%, and 29.3% of PM2.5, BC, and NO2 concentrations, respectively. DISCUSSION: The adaptive LASSO technique identified significant regional-, school-, and classroom-based factors influencing classroom air pollutant levels and provided robust estimates that could potentially inform targeted interventions aiming at improving children's health and well-being during their early years of development. https://doi.org/10.1289/EHP10007.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Carbono , Criança , Monitoramento Ambiental/métodos , Humanos , Dióxido de Nitrogênio , Material Particulado/análise , Fuligem
5.
Environ Res ; 197: 111114, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812873

RESUMO

Particle radioactivity (PR) exposure has been linked to adverse health effects. PR refers to the presence of α- and ß-emitting radioisotopes attached to fine particulate matter (PM2.5). This study investigated sources contributing to indoor PM2.5 gross α- and ß-radioactivity levels. We measured activity from long-lived radon progeny radionuclides from archived PM2.5 samples collected in 340 homes in Massachusetts during the period 2006-2010. We analyzed the data using linear mixed effects models and positive matrix factorization (PMF) analysis. Indoor PM2.5 gross α-activity levels were correlated with sulfur (S), iron (Fe), bromine (Br), vanadium (V), sodium (Na), lead (Pb), potassium (K), calcium (Ca), silicon (Si), zinc (Zn), arsenic (As), titanium (Ti), radon (222Rn) and black carbon (BC) concentrations (p <0.05). Indoor PM2.5 ß-activity was correlated with S, As, antimony (Sb), Pb, Br and BC. We identified four indoor PM2.5 sources: outdoor air pollution (62%), salt aerosol source (14%), fireworks and environmental tobacco smoke (7%) and indoor mixed dust (17%). Outdoor air pollution was the most significant contributor to indoor PM2.5 α- and ß-activity levels. The contributions of this source were during the summer months and when windows were open. Indoor mixed dust was also found to contribute to PM2.5 α-activity. PM2.5 α-activity was further associated with radon during winter months, showing radon's important role as an indoor source of ionizing radiation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Massachusetts , Tamanho da Partícula , Material Particulado/análise
6.
J Air Waste Manag Assoc ; 67(1): 105-126, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27650473

RESUMO

Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM10 (PM with an aerodynamic diameter ≤10 µm) pollution episodes in Greece. We examined PM10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM10 pollution episodes (EEs) as days during which PM10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83 µg/m3, whereas during LSI it varied from 14 to 67 µg/m3. IMPLICATIONS: This paper examines the occurrence and nature of extreme PM10 pollution episodes (EEs) in Greece during a 3-yr period (2009-2011). Fourteen EEs were found of 49 days total duration, classified into two main categories: Local Source Impact (53%) and African Dust Impact (47%). All the above extreme PM10 air pollution episodes were the result of specific synoptic prevailing conditions. Specific information on the linkages between the synoptic weather patterns and PM10 concentrations could be used in the development of weather/health-warning system to alert the public that a synoptic episode is imminent.


Assuntos
Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/química , Poluentes Atmosféricos/análise , Cidades , Carvão Mineral/análise , Poeira/análise , Grécia , Humanos , Indústrias , Mineração , Modelos Teóricos , Centrais Elétricas , Estações do Ano , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...