Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0278294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472974

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the Coronavirus disease 2019 (Covid-19) pandemic, continues to evolve and circulate globally. Current prophylactic and therapeutic countermeasures against Covid-19 infection include vaccines, small molecule drugs, and neutralizing monoclonal antibodies. SARS-CoV-2 infection is mainly mediated by the viral spike glycoprotein binding to angiotensin converting enzyme 2 (ACE2) on host cells for viral entry. As emerging mutations in the spike protein evade efficacy of spike-targeted countermeasures, a potential strategy to counter SARS-CoV-2 infection is to competitively block the spike protein from binding to the host ACE2 using a soluble recombinant fusion protein that contains a human ACE2 and an IgG1-Fc domain (ACE2-Fc). Here, we have established Chinese Hamster Ovary (CHO) cell lines that stably express ACE2-Fc proteins in which the ACE2 domain either has or has no catalytic activity. The fusion proteins were produced and purified to partially characterize physicochemical properties and spike protein binding. Our results demonstrate the ACE2-Fc fusion proteins are heavily N-glycosylated, sensitive to thermal stress, and actively bind to five spike protein variants (parental, alpha, beta, delta, and omicron) with different affinity. Our data demonstrates a proof-of-concept production strategy for ACE2-Fc fusion glycoproteins that can bind to different spike protein variants to support the manufacture of potential alternative countermeasures for emerging SARS-CoV-2 variants.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Glicoproteínas , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
2.
Mol Ther Methods Clin Dev ; 25: 124-135, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35402630

RESUMO

Most therapeutic proteins are glycosylated with N-glycans and/or O-glycans. N-glycans on therapeutic proteins have been extensively studied for their control strategy and impact on drug product quality. However, knowledge of O-glycosylation in therapeutic protein production and its impact on product quality remains elusive. To address this gap, we generated an O-glycoengineered Chinese Hamster Ovary (CHO) cell line platform to modulate O-glycosylation of therapeutic proteins and investigated the impact of O-glycans on the physicochemical and biological properties of etanercept. Our results demonstrate that this CHO cell line platform produces controlled O-glycosylation profiles containing either truncated O-glycans (sialylTn and/or Tn), or sialylCore 3 alone, or sialylCore 1 with sialylTn or sialylCore 3 O-glycans on endogenous and recombinant proteins. Moreover, the platform demonstrated exclusive modulation of O-glycosylation without affecting N-glycosylation. Importantly, certain O-glycans on etanercept enhanced tumor necrosis factor-α binding affinity and consequent potency. This is the first report that describes the systematic establishment of an O-glycoengineered CHO cell line platform with direct evidence that supports the applicability of the platform in the production of engineered proteins with desired O-glycans. This platform is valuable for identifying O-glycosylation as a critical quality attribute of biotherapeutics using the quality by design principle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...