Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 93(4): 373-376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351463

RESUMO

Research Highlight: del Mar Labrador, M., Serrano, D., Doña, J., Aguilera, E., Arroyo, J. L., Atiénzar, F., Barba, E., Bermejo, A., Blanco, G., Borràs, A., Calleja, J. A., Cantó, J. L., Cortés, V., de la Puente, J., de Palacio, D., Fernández-González, S., Figuerola, J., Frías, Ó., Fuertes-Marcos, B. Garamszegi, L. Z., Gordo, Ó., Gurpegui, M., Kovács, I., Martínez, J. L., Meléndez, L., Mestre, A., Møller, A. P., Monrós, J. S., Moreno-Opo, R., Navarro, C., Pap, P. L., Pérez-Tris, J., Piculo, R., Ponce, C., Proctor, H., Rodríguez, R., Sallent, Á., Senar, J., Tella, J. L., Vágási, C. I., Vögeli, M., & Jovani, R. (2023). Host space, not energy or symbiont size, constrains feather mite abundance across passerine bird species. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.14032. Symbionts represent crucial links between species in ecosystems. Consequently, understanding their patterns of abundance is a major goal in the study of symbioses. However, multiple biotic and abiotic factors may regulate symbionts, and disentangling the mechanisms that drive variation in their abundance across host species is challenging. One promising strategy to approach this challenge is to incorporate biologically relevant data into theoretical models. In a recent study, Labrador et al. (2023) used this strategy to investigate the poorly understood symbiosis between feather mites and their avian hosts. They integrate a remarkable amount of empirical data with models based on the metabolic theory of ecology to determine what factors limit feather mite abundance across European passerines. Their quantitative analyses indicate that the number of feather barbs limits mite abundance across host species, suggesting that mite populations are spatially, but not energetically, constrained. These findings not only reveal mechanisms that may drive the variation in feather mite abundances across hosts, but also advance our understanding of the ecology of interspecific interactions more generally.


Assuntos
Doenças das Aves , Ácaros , Animais , Ácaros/fisiologia , Ecossistema , Ecologia , Simbiose
2.
Life (Basel) ; 13(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37895435

RESUMO

Microscopic symbionts represent crucial links in biological communities. However, they present technical challenges in high-throughput sequencing (HTS) studies due to their small size and minimal high-quality DNA yields, hindering our understanding of host-symbiont coevolution at microevolutionary and macroevolutionary scales. One approach to overcome those barriers is to pool multiple individuals from the same infrapopulation (i.e., individual host) and sequence them together (Pool-Seq), but individual-level information is then compromised. To simultaneously address both issues (i.e., minimal DNA yields and loss of individual-level information), we implemented a strategic Pool-Seq approach to assess variation in sequencing performance and categorize genetic diversity (single nucleotide polymorphisms (SNPs)) at both the individual-level and infrapopulation-level for microscopic feather mites. To do so, we collected feathers harboring mites (Proctophyllodidae: Amerodectes protonotaria) from four individual Prothonotary Warblers (Parulidae: Protonotaria citrea). From each of the four hosts (i.e., four mite infrapopulations), we conducted whole-genome sequencing on three extraction pools consisting of different numbers of mites (1 mite, 5 mites, and 20 mites). We found that samples containing pools of multiple mites had more sequencing reads map to the feather mite reference genome than did the samples containing only a single mite. Mite infrapopulations were primarily genetically structured by their associated individual hosts (not pool size) and the majority of SNPs were shared by all pools within an infrapopulation. Together, these results suggest that the patterns observed are driven by evolutionary processes occurring at the infrapopulation level and are not technical signals due to pool size. In total, despite the challenges presented by microscopic symbionts in HTS studies, this work highlights the value of both individual-level and infrapopulation-level sequencing toward our understanding of host-symbiont coevolution at multiple evolutionary scales.

3.
Mol Ecol ; 32(19): 5260-5275, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37635403

RESUMO

Researchers often examine symbiont host specificity as a species-level pattern, but it can also be key to understanding processes occurring at the population level, which are not as well understood. The specialist-generalist variation hypothesis (SGVH) attempts to explain how host specificity influences population-level processes, stating that single-host symbionts (specialists) exhibit stronger population genetic structure than multi-host symbionts (generalists) because of fewer opportunities for dispersal and more restricted gene flow between populations. However, this hypothesis has not been tested in systems with highly mobile hosts, in which population connectivity may vary temporally and spatially. To address this gap, we tested the SGVH on proctophyllodid feather mites found on migratory warblers (family Parulidae) with contrasting host specificities, Amerodectes protonotaria (a host specialist of Protonotaria citrea) and A. ischyros (a host generalist of 17 parulid species). We used a pooled-sequencing approach and a novel workflow to analyse genetic variants obtained from whole genome data. Both mite species exhibited fairly weak population structure overall, and contrary to predictions of the SGVH, the generalist was more strongly structured than the specialist. These results may suggest that specialists disperse more freely among conspecifics, whereas generalists sort according to geography. Furthermore, our results may reflect an unexpected period for mite transmission - during the nonbreeding season of migratory hosts - as mite population structure more closely reflects the distributions of hosts during the nonbreeding season. Our findings alter our current understanding of feather mite biology and highlight the potential for studies to explore factors driving symbiont diversification at multiple evolutionary scales.


Assuntos
Ácaros , Passeriformes , Animais , Ácaros/genética , Passeriformes/genética , Evolução Biológica , Especificidade de Hospedeiro , Geografia , Simbiose/genética
4.
Syst Biol ; 72(4): 802-819, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-36960591

RESUMO

A fundamental aspect of symbiotic relationships is host specificity, ranging from extreme specialists associated with only a single host species to generalists associated with many different species. Although symbionts with limited dispersal capabilities are expected to be host specialists, some are able to associate with multiple hosts. Understanding the micro- and macro-evolutionary causes of variations in host specificity is often hindered by sampling biases and the limited power of traditional evolutionary markers. Here, we studied feather mites to address the barriers associated with estimates of host specificity for dispersal-limited symbionts. We sampled feather mites (Proctophyllodidae) from a nearly comprehensive set of North American breeding warblers (Parulidae) to study mite phylogenetic relationships and host-symbiont codiversification. We used pooled-sequencing (Pool-Seq) and short-read Illumina technology to interpret results derived from a traditional barcoding gene (cytochrome c oxidase subunit 1) versus 11 protein-coding mitochondrial genes using concatenated and multispecies coalescent approaches. Despite the statistically significant congruence between mite and host phylogenies, mite-host specificity varies widely, and host switching is common regardless of the genetic marker resolution (i.e., barcode vs. multilocus). However, the multilocus approach was more effective than the single barcode in detecting the presence of a heterogeneous Pool-Seq sample. These results suggest that presumed symbiont dispersal capabilities are not always strong indicators of host specificity or of historical host-symbiont coevolutionary events. A comprehensive sampling at fine phylogenetic scales may help to better elucidate the microevolutionary filters that impact macroevolutionary processes regulating symbioses, particularly for dispersal-limited symbionts. [Codiversification; cophylogenetics; feather mites; host switching; pooled sequencing; species delineation; symbiosis, warblers.].


Assuntos
Especificidade de Hospedeiro , Ácaros , Animais , Filogenia , Ácaros/genética , Evolução Biológica , Simbiose
5.
Data Brief ; 46: 108835, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36591378

RESUMO

Feather mites are ubiquitous, permanent, obligate ectosymbionts of avian hosts and are a valuable natural system for studying host-symbiont evolutionary and ecological dynamics at multiple levels of biological organization. However, a lack of a sequenced genome impedes molecular studies using this system. Therefore, we present the first draft genome of a symbiotic feather mite, Amerodectes protonotaria Hernandes 2018. The genome sequence data presented here were derived from an individual female mite that was collected in the field from Protonotaria citrea, its only known host species. Short read sequence data were obtained using an Illumina NovaSeq 6000 platform. From these data, we assembled a 59,665,063 bp draft genome consisting of 2,399 contigs. Raw short reads and the assembled genome sequence are available at the National Center for Biotechnology Information (NCBI)'s Sequence Read Archive (SRA) under BioProject PRJNA884722. The data presented here are beneficial for future research on the biology and evolution of closely related mites and the genomics of host-symbiont interactions.

6.
Mol Ecol ; 30(21): 5605-5620, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34424571

RESUMO

Over the past few decades, large-scale phylogenetic analyses of fungus-gardening ants and their symbiotic fungi have depicted strong concordance among major clades of ants and their symbiotic fungi, yet within clades, fungus sharing is widespread among unrelated ant lineages. Sharing has been explained using a diffuse coevolution model within major clades. Understanding horizontal exchange within clades has been limited by conventional genetic markers that lack both interspecific and geographic variation. To examine whether reports of horizontal exchange were indeed due to symbiont sharing or the result of employing relatively uninformative molecular markers, samples of Trachymyrmex arizonensis and Trachymyrmex pomonae and their fungi were collected from native populations in Arizona and genotyped using conventional marker genes and genome-wide single nucleotide polymorphisms (SNPs). Conventional markers of the fungal symbionts generally exhibited cophylogenetic patterns that were consistent with some symbiont sharing, but most fungal clades had low support. SNP analysis, in contrast, indicated that each ant species exhibited fidelity to its own fungal subclade with only one instance of a colony growing a fungus that was otherwise associated with a different ant species. This evidence supports a pattern of codivergence between Trachymyrmex species and their fungi, and thus a diffuse coevolutionary model may not accurately predict symbiont exchange. These results suggest that fungal sharing across host species in these symbioses may be less extensive than previously thought.


Assuntos
Formigas , Animais , Formigas/genética , Fungos , Genótipo , Filogenia , Simbiose/genética
7.
Ecol Evol ; 11(5): 2307-2320, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717457

RESUMO

For nearly all organisms, dispersal is a fundamental life-history trait that can shape their ecology and evolution. Variation in dispersal capabilities within a species exists and can influence population genetic structure and ecological interactions. In fungus-gardening (attine) ants, co-dispersal of ants and mutualistic fungi is crucial to the success of this obligate symbiosis. Female-biased dispersal (and gene flow) may be favored in attines because virgin queens carry the responsibility of dispersing the fungi, but a paucity of research has made this conclusion difficult. Here, we investigate dispersal of the fungus-gardening ant Trachymyrmex septentrionalis using a combination of maternally (mitochondrial DNA) and biparentally inherited (microsatellites) markers. We found three distinct, spatially isolated mitochondrial DNA haplotypes; two were found in the Florida panhandle and the other in the Florida peninsula. In contrast, biparental markers illustrated significant gene flow across this region and minimal spatial structure. The differential patterns uncovered from mitochondrial DNA and microsatellite markers suggest that most long-distance ant dispersal is male-biased and that females (and concomitantly the fungus) have more limited dispersal capabilities. Consequently, the limited female dispersal is likely an important bottleneck for the fungal symbiont. This bottleneck could slow fungal genetic diversification, which has significant implications for both ant hosts and fungal symbionts regarding population genetics, species distributions, adaptive responses to environmental change, and coevolutionary patterns.

8.
BMC Res Notes ; 13(1): 173, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32204727

RESUMO

OBJECTIVE: The objective of this study is to develop and identify polymorphic microsatellite markers for fungus-gardening (attine) ants in the genus Trachymyrmex sensu lato. These ants are important ecosystem engineers and have been a model group for understanding complex symbiotic systems, but very little is understood about the intraspecific genetic patterns across most North American attine species. These microsatellite markers will help to better study intraspecific population genetic structure, gene flow, mating habits, and phylogeographic patterns in these species and potentially other congeners. RESULTS: Using next-generation sequencing techniques, we identified 17 and 12 polymorphic microsatellite markers from T. septentrionalis and Mycetomoellerius (formerly Trachymyrmex) turrifex, respectively, and assessed the genetic diversity of each marker. We also analyzed the cross-amplification success of the T. septentrionalis markers in two other closely related Trachymyrmex species, and identified 10 and 12 polymorphic markers for T. arizonensis and T. pomonae, respectively.


Assuntos
Formigas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Polimorfismo Genético , Animais
9.
Ecol Evol ; 8(2): 1227-1238, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375793

RESUMO

Feather mites are obligatory ectosymbionts of birds that primarily feed on the oily secretions from the uropygial gland. Feather mite abundance varies within and among host species and has various effects on host condition and fitness, but there is little consensus on factors that drive variation of this symbiotic system. We tested hypotheses regarding how within-species and among-species traits explain variation in both (1) mite abundance and (2) relationships between mite abundance and host body condition and components of host fitness (reproductive performance and apparent annual survival). We focused on two closely related (Parulidae), but ecologically distinct, species: Setophaga cerulea (Cerulean Warbler), a canopy dwelling open-cup nester, and Protonotaria citrea (Prothonotary Warbler), an understory dwelling, cavity nester. We predicted that feather mites would be more abundant on and have a more parasitic relationship with P. citrea, and within P. citrea, females and older individuals would harbor greater mite abundances. We captured, took body measurements, quantified feather mite abundance on individuals' primaries and rectrices, and monitored individuals and their nests to estimate fitness. Feather mite abundance differed by species, but in the opposite direction of our prediction. There was no relationship between mite abundance and any measure of body condition or fitness for either species or sex (also contrary to our predictions). Our results suggest that species biology and ecological context may influence mite abundance on hosts. However, this pattern does not extend to differential effects of mites on measures of host body condition or fitness.

10.
Parasitol Res ; 116(1): 73-80, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27709356

RESUMO

Parasite prevalence is thought to be positively related to host population density owing to enhanced contagion. However, the relationship between prevalence and local abundance of multiple host species is underexplored. We surveyed birds and their haemosporidian parasites (genera Plasmodium and Haemoproteus) at multiple sites across eastern North America to test whether the prevalence of these parasites in a host species at a particular site is related to that host's local abundance. Prevalence was positively related to host abundance within most sites, although the effect was stronger and more consistent for Plasmodium than for Haemoproteus. In contrast, prevalence was not related to variation in the abundance of most individual host species among sites across the region. These results suggest that parasite prevalence partly reflects the relative abundances of host species in local assemblages. However, three nonnative host species had low prevalence despite being relatively abundant at one site, as predicted by the enemy release hypothesis.


Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Haemosporida/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Infecções Protozoárias em Animais/epidemiologia , Animais , Aves/parasitologia , América do Norte/epidemiologia , Plasmodium/fisiologia , Densidade Demográfica , Prevalência
11.
Proc Natl Acad Sci U S A ; 112(36): 11294-9, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305975

RESUMO

The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.


Assuntos
Aves/parasitologia , Haemosporida/fisiologia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Algoritmos , Animais , Doenças das Aves/sangue , Doenças das Aves/parasitologia , Clima , Citocromos b/genética , Geografia , Haemosporida/classificação , Haemosporida/genética , Modelos Biológicos , Parasitos/classificação , Parasitos/genética , Parasitos/fisiologia , Dinâmica Populacional , Análise de Componente Principal , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...