Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 9(2): e0003421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34585986

RESUMO

Associated microorganisms ("microbiota") play a central role in determining many animals' survival and reproduction characteristics. The impact of these microbial influences on an animal's fitness, or population growth, in a given environment has not been defined as clearly. We focused on microbiota-dependent host fitness by measuring life span and fecundity in Drosophila melanogaster fruit flies reared individually with 14 different bacterial species. Consistent with previous observations, the different bacteria significantly influenced the timing of fly life span and fecundity. Using Leslie matrices, we show that fly fitness was lowest when the microbes caused the flies to invest in life span over fecundity. Computational permutations showed that the positive fitness effect of investing in reproduction was reversed if fly survival over time was low, indicating that the observed fitness influences of the microbes could be context dependent. Finally, we showed that fly fitness is not influenced by bacterial genes that shape fly life span or fly triglyceride content, a trait that is related to fly survival and reproduction. Also, metagenome-wide association did not identify any microbial genes that were associated with variation in fly fitness. Therefore, the bacterial genetic basis for influencing fly fitness remains unknown. We conclude that bacteria influence a fly's reproductive timing more than total reproductive output and that (e.g., environmental) conditions that influence fly survival likely determine which bacteria benefit fly fitness. IMPORTANCE The ability of associated microorganisms ("microbiota") to influence animal life history traits has been recognized and investigated, especially in the past 2 decades. For many microbial communities, there is not always a clear definition of whether the microbiota or its members are beneficial, pathogenic, or relatively neutral to their hosts' fitness. In this study, we report the influence of individual members of the microbiota on Drosophila melanogaster fitness using Leslie matrices that combine the microbial influences on fly survival and reproduction into a single fitness measure. Our results are consistent with a previous report that, in the laboratory, acetic acid bacteria are more beneficial to the flies than many strains of lactic acid bacteria. We add to the previous finding by showing that this benefit depends on fly survival rate. Together, our work helps to show how the microbiota of a fly influences its laboratory fitness and how these effects may translate to a wild setting.


Assuntos
Bactérias/classificação , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/microbiologia , Aptidão Genética/fisiologia , Microbiota/genética , Animais , Bactérias/genética , Fertilidade/fisiologia , Longevidade/fisiologia , Metagenoma/genética , Reprodução/fisiologia
2.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32144104

RESUMO

To better understand how associated microorganisms ("microbiota") influence organismal aging, we focused on the model organism Drosophila melanogaster We conducted a metagenome-wide association (MGWA) as a screen to identify bacterial genes associated with variation in the D. melanogaster life span. The results of the MGWA predicted that bacterial cysteine and methionine metabolism genes influence fruit fly longevity. A mutant analysis, in which flies were inoculated with Escherichia coli strains bearing mutations in various methionine cycle genes, confirmed a role for some methionine cycle genes in extending or shortening fruit fly life span. Initially, we predicted these genes might influence longevity by mimicking or opposing methionine restriction, an established mechanism for life span extension in fruit flies. However, follow-up transcriptome sequencing (RNA-seq) and metabolomic experiments were generally inconsistent with this conclusion and instead implicated glucose and vitamin B6 metabolism in these influences. We then tested if bacteria could influence life span through methionine restriction using a different set of bacterial strains. Flies reared with a bacterial strain that ectopically expressed bacterial transsulfuration genes and lowered the methionine content of the fly diet also extended female D. melanogaster life span. Taken together, the microbial influences shown here overlap with established host genetic mechanisms for aging and therefore suggest overlapping roles for host and microbial metabolism genes in organismal aging.IMPORTANCE Associated microorganisms ("microbiota") are intimately connected to the behavior and physiology of their animal hosts, and defining the mechanisms of these interactions is an urgent imperative. This study focuses on how microorganisms influence the life span of a model host, the fruit fly Drosophila melanogaster First, we performed a screen that suggested a strong influence of bacterial methionine metabolism on host life span. Follow-up analyses of gene expression and metabolite abundance identified stronger roles for vitamin B6 and glucose than methionine metabolism among the tested mutants, possibly suggesting a more limited role for bacterial methionine metabolism genes in host life span effects. In a parallel set of experiments, we created a distinct bacterial strain that expressed life span-extending methionine metabolism genes and showed that this strain can extend fly life span. Therefore, this work identifies specific bacterial genes that influence host life span, including in ways that are consistent with the expectations of methionine restriction.


Assuntos
Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Microbiota/fisiologia , Animais , Estudo de Associação Genômica Ampla , Longevidade/fisiologia , Metaboloma/genética , Metagenoma/fisiologia , Microbiota/genética
3.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934334

RESUMO

Animal-associated microorganisms (microbiota) dramatically influence the nutritional and physiological traits of their hosts. To expand our understanding of such influences, we predicted bacterial genes that influence a quantitative animal trait by a comparative genomic approach, and we extended these predictions via mutant analysis. We focused on Drosophila melanogaster starvation resistance (SR). We first confirmed that D. melanogaster SR responds to the microbiota by demonstrating that bacterium-free flies have greater SR than flies bearing a standard 5-species microbial community, and we extended this analysis by revealing the species-specific influences of 38 genome-sequenced bacterial species on D. melanogaster SR. A subsequent metagenome-wide association analysis predicted bacterial genes with potential influence on D. melanogaster SR, among which were significant enrichments in bacterial genes for the metabolism of sulfur-containing amino acids and B vitamins. Dietary supplementation experiments established that the addition of methionine, but not B vitamins, to the diets significantly lowered D. melanogaster SR in a way that was additive, but not interactive, with the microbiota. A direct role for bacterial methionine metabolism genes in D. melanogaster SR was subsequently confirmed by analysis of flies that were reared individually with distinct methionine cycle Escherichia coli mutants. The correlated responses of D. melanogaster SR to bacterial methionine metabolism mutants and dietary modification are consistent with the established finding that bacteria can influence fly phenotypes through dietary modification, although we do not provide explicit evidence of this conclusion. Taken together, this work reveals that D. melanogaster SR is a microbiota-responsive trait, and specific bacterial genes underlie these influences.IMPORTANCE Extending descriptive studies of animal-associated microorganisms (microbiota) to define causal mechanistic bases for their influence on animal traits is an emerging imperative. In this study, we reveal that D. melanogaster starvation resistance (SR), a model quantitative trait in animal genetics, responds to the presence and identity of the microbiota. Using a predictive analysis, we reveal that the amino acid methionine has a key influence on D. melanogaster SR and show that bacterial methionine metabolism mutants alter normal patterns of SR in flies bearing the bacteria. Our data further suggest that these effects are additive, and we propose the untested hypothesis that, similar to bacterial effects on fruit fly triacylglyceride deposition, the bacterial influence may be through dietary modification. Together, these findings expand our understanding of the bacterial genetic basis for influence on a nutritionally relevant trait of a model animal host.


Assuntos
Drosophila melanogaster/microbiologia , Trato Gastrointestinal/microbiologia , Metionina/metabolismo , Microbiota/genética , Inanição/prevenção & controle , Acetobacter/genética , Acetobacter/metabolismo , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Lactobacillus/genética , Lactobacillus/metabolismo , Simbiose
4.
G3 (Bethesda) ; 8(4): 1119-1127, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29487183

RESUMO

A metagenome wide association (MGWA) study of bacterial host association determinants in Drosophila predicted that LPS biosynthesis genes are significantly associated with host colonization. We were unable to create site-directed mutants for each of the predicted genes in Acetobacter, so we created an arrayed transposon insertion library using Acetobacter fabarum DsW_054 isolated from Drosophila Creation of the A. fabarum DsW_054 gene knock-out library was performed by combinatorial mapping and Illumina sequencing of random transposon insertion mutants. Transposon insertion locations for 6,418 mutants were successfully mapped, including hits within 63% of annotated genes in the A. fabarum DsW_054 genome. For 45/45 members of the library, insertion sites were verified by arbitrary PCR and Sanger sequencing. Mutants with insertions in four different LPS biosynthesis genes were selected from the library to validate the MGWA predictions. Insertion mutations in two genes biosynthetically upstream of Lipid-A formation, lpxC and lpxB, show significant differences in host association, whereas mutations in two genes encoding LPS biosynthesis functions downstream of Lipid-A biosynthesis had no effect. These results suggest an impact of bacterial cell surface molecules on the bacterial capacity for host association. Also, the transposon insertion mutant library will be a useful resource for ongoing research on the genetic basis for Acetobacter traits.


Assuntos
Acetobacter/genética , Drosophila melanogaster/microbiologia , Biblioteca Gênica , Estudo de Associação Genômica Ampla , Lipopolissacarídeos/genética , Metagenoma , Mutação/genética , Animais , Carga Bacteriana , Vias Biossintéticas/genética , Elementos de DNA Transponíveis/genética , Genes Bacterianos , Genes Essenciais , Mutagênese Insercional/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...