Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 4(1): 66-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819239

RESUMO

Humid montane forests are challenging environments for human habitation. We used high-resolution fossil pollen, charcoal, diatom and sediment chemistry data from the iconic archaeological setting of Laguna de los Condores, Peru to reconstruct changing land uses and climates in a forested Andean valley. Forest clearance and maize cultivation were initiated during periods of drought, with periods of forest recovery occurring during wetter conditions. Between AD 800 and 1000 forest regrowth was evident, but this trend was reversed between AD 1000 and 1200 as drier conditions coincided with renewed land clearance, the establishment of a permanent village and the use of cliffs overlooking the lake as a burial site. By AD 1230 forests had regrown in the valley and maize cultivation was greatly reduced. An elevational transect investigating regional patterns showed a parallel, but earlier, history of reduced maize cultivation and forest regeneration at mid-elevation. However, a lowland site showed continuous maize agriculture until European conquest but very little subsequent change in forest cover. Divergent, climate-sensitive landscape histories do not support categorical assessments that forest regrowth and peak carbon sequestration coincided with European arrival.


Assuntos
Mudança Climática , Florestas , Aclimatação , Agricultura , Humanos , Peru
2.
Proc Natl Acad Sci U S A ; 114(3): 522-527, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049821

RESUMO

Although the Amazon rainforest houses much of Earth's biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests.


Assuntos
Florestas , Floresta Úmida , Biodiversidade , Ciclo do Carbono , Meio Ambiente , História Antiga , Humanos , Modelos Biológicos , América do Sul
3.
J Paleolimnol ; 58(4): 437-453, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009735

RESUMO

Aquatic ecosystems in the tropical Andes are under increasing pressure from human modification of the landscape (deforestation and dams) and climatic change (increase of extreme events and 1.5 °C on average temperatures are projected for AD 2100). However, the resilience of these ecosystems to perturbations is poorly understood. Here we use a multi-proxy palaeoecological approach to assess the response of aquatic ecosystems to a major mechanism for natural disturbance, volcanic ash deposition. Specifically, we present data from two Neotropical lakes located on the eastern Andean flank of Ecuador. Laguna Pindo (1°27.132'S-78°04.847'W) is a tectonically formed closed basin surrounded by a dense mid-elevation forest, whereas Laguna Baños (0°19.328'S-78°09.175'W) is a glacially formed lake with an inflow and outflow in high Andean Páramo grasslands. In each lake we examined the dynamics of chironomids and other aquatic and semi-aquatic organisms to explore the effect of thick (> 5 cm) volcanic deposits on the aquatic communities in these two systems with different catchment features. In both lakes past volcanic ash deposition was evident from four large tephras dated to c.850 cal year BP (Pindo), and 4600, 3600 and 1500 cal year BP (Baños). Examination of the chironomid and aquatic assemblages before and after the ash depositions revealed no shift in composition at Pindo, but a major change at Baños occurred after the last event around 1500 cal year BP. Chironomids at Baños changed from an assemblage dominated by Pseudochironomus and Polypedilum nubifer-type to Cricotopus/Paratrichocladius type-II, and such a dominance lasted for approximately 380 years. We suggest that, despite potential changes in the water chemistry, the major effect on the chironomid community resulted from the thickness of the tephra being deposited, which acted to shallow the water body beyond a depth threshold. Changes in the aquatic flora and fauna at the base of the trophic chain can promote cascade effects that may deteriorate the ecosystem, especially when already influenced by human activities, such as deforestation and dams, which is frequent in the high Andes.

4.
New Phytol ; 212(2): 510-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27374975

RESUMO

Microrefugia are important for supporting populations during periods of unfavourable climate change and in facilitating rapid migration as conditions ameliorate. With ongoing anthropogenic climate change, microrefugia could have an important conservation value; however, a simple tool has not been developed and tested to predict which settings are microrefugial. We provide a tool based on terrain ruggedness modelling of individual catchments to predict Andean microrefugia. We tested the predictions using nine Holocene Polylepis pollen records. We used the mid-Holocene dry event, a period of peak aridity for the last 100 000 yr, as an analogue climate scenario for the near future. The results suggest that sites with high terrain rugosity have the greatest chance of sustaining mesic conditions under drier-than-modern climates. Fire is a feature of all catchments; however, an increase in fire is only recorded in settings with low rugosity. Owing to rising temperatures and greater precipitation variability, Andean ecosystems are threatened by increasing moisture stress. Our results suggest that high terrain rugosity helps to create more resilient catchments by trapping moisture through orographic rainfall and providing firebreaks that shelter forest from fire. On this basis, conservation policy should target protection and management of catchments with high terrain rugosity.


Assuntos
Ecossistema , Florestas , Geografia , Sedimentos Geológicos/química , Paleontologia , Peru , Fatores de Tempo
5.
Ecol Evol ; 6(1): 91-112, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811777

RESUMO

To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid- and high-latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1-17°S and 64-78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high-elevation oligotrophic lakes, will likely see range contraction under future anthropogenic-induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio-indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...