Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192214

RESUMO

Traumatic brain injury (TBI) often results in long-lasting patterns of neurological deficits including motor, sensory, and cognitive abnormalities. Cranial gunshot survivors are among the most disabled TBI patients and face a lifetime of disability with no approved strategies to protect or repair the brain after injury. Recent studies using a model of penetrating TBI (pTBI) have reported that human neural stem cells (hNSCs) transplantation can lead to dose and location-dependent neuroprotection. Evidence for regional patterns of microglial activation has also been reported after pTBI with evidence for microglial cell death by pyroptosis. Because of the importance of injury-induced microglial activation in the pathogenesis of TBI, we tested the hypothesis that dose-dependent hNSC mediated neuroprotection after pTBI was associated with reduced microglial activation in pericontusional cortical areas. To test this hypothesis, quantitative microglial/macrophage Iba1 immunohistochemistry and Sholl analysis was conducted to investigate the arborization patterns using four experimental groups including, (i) Sham operated (no injury) + low dose (0.16 million cells/rat), (ii) pTBI + vehicle (no cells), (iii) pTBI + low dose hNSCs (0.16 million/rat), and (iv) pTBI + high dose hNSCs (1.6 million cells/rat). At 3 months post-transplantation (transplants at one week after pTBI), the total number of intersections was significantly reduced in vehicle treated pTBI animals versus sham operated controls indicating increased microglia/macrophage activation. In contrast, hNSC transplantation led to a dose-dependent increase in the number of intersections compared to pTBI vehicle indicating less microglia/macrophage activation. The peak of Sholl intersections at 1 µm from the center of the microglia/macrophages ranged from ~6,500-14,000 intersections for sham operated, ~250-500 intersections for pTBI vehicle, ~550-1,000 intersections for pTBI low dose, and ~2,500-7,500 intersections for pTBI high dose. Plotting data along the rostrocaudal axis also showed that pericontusional cortical areas protected by hNSC transplantation had increased intersections compared to nontreated pTBI animals. These studies using a non-biased Sholl analysis demonstrated a dose-dependent reduction in inflammatory cell activation that may be associated with a neuroprotective effect driven by the cellular transplant in perilesional regions after pTBI.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Neurais , Humanos , Ratos , Animais , Microglia/metabolismo , Ativação de Macrófagos , Lesões Encefálicas Traumáticas/patologia , Células-Tronco Neurais/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças
2.
J Alzheimers Dis ; 89(2): 463-471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871340

RESUMO

BACKGROUND: There are few studies on the locus coeruleus (LC) in frontotemporal lobar degeneration (FTLD) and the potential differences in the LC related to the underlying proteinopathy. OBJECTIVE: The aim of this study was to investigate the LC in FTLD subgroups. METHODS: Neuropathological cases diagnosed with FTLD were included. The subgroups consisted of FTLD with tau, transactive response DNA-binding protein 43 (TDP) and fused in sarcoma (FUS). Micro- and macroscopical degeneration of the LC were assessed with respect to the number of neurons and the degree of depigmentation. A group of cognitively healthy subjects and a group with vascular cognitive impairment (VCI) served as comparison groups. RESULTS: A total of 85 FTLD cases were included, of which 44 had FTLD-TDP, 38 had FTLD-tau, and three had FTLD-FUS. The groups were compared with 25 VCI cases and 41 cognitively healthy control cases (N = 151 for the entire study). All FTLD groups had a statistically higher microscopical degeneration of the LC compared to the controls, but the FTLD-tau group had greater micro- and macroscopical degeneration than the FTLD-TDP group. Age correlated positively with the LC score in the FTLD-tau group, but not in the FTLD-TDP group. CONCLUSION: A greater microscopical degeneration of the LC was observed in all FTLD cases compared to healthy controls and those with VCI. The LC degeneration was more severe in FTLD-tau than in FTLD-TDP. The macroscopically differential degeneration of the LC in FTLD subgroups may facilitate differential diagnostics, potentially with imaging.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/psicologia , Degeneração Lobar Frontotemporal/diagnóstico , Humanos , Locus Cerúleo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...