Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
PLoS One ; 17(5): e0267156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35588119

RESUMO

Appropriate cardiac performance depends on a tightly controlled handling of Ca2+ in a broad range of species, from invertebrates to mammals. The role of the Ca2+ ATPase, SERCA, in Ca2+ handling is pivotal, and its activity is regulated, inter alia, by interacting with distinct proteins. Herein, we give evidence that 4E binding protein (4E-BP) is a novel regulator of SERCA activity in Drosophila melanogaster during cardiac function. Flies over-expressing 4E-BP showed improved cardiac performance in young individuals associated with incremented SERCA activity. Moreover, we demonstrate that SERCA interacts with translation initiation factors eIF4E-1, eIF4E-2 and eIF4E-4 in a yeast two-hybrid assay. The specific identification of eIF4E-4 in cardiac tissue leads us to propose that the interaction of elF4E-4 with SERCA may be the basis of the cardiac effects observed in 4E-BP over-expressing flies associated with incremented SERCA activity.


Assuntos
Drosophila , Fator de Iniciação 4E em Eucariotos , Animais , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Mamíferos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica
3.
Pflugers Arch ; 474(1): 33-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34978597

RESUMO

Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex and intricate mechanisms involved in diabetic cardiomyopathy, Ca2+ mishandling and mitochondrial dysfunction have been described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.


Assuntos
Cálcio/metabolismo , Cardiomiopatias Diabéticas/etiologia , Mitocôndrias Cardíacas/metabolismo , Estado Pré-Diabético/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Citosol/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Acoplamento Excitação-Contração , Humanos
6.
J Gen Physiol ; 153(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33710262

RESUMO

This commentary analyzes the possible effects of lightness-a typical attribute of modern (liquid) society, according to Bauman-on the way we are doing science. We share our opinion in an attempt to discern whether some unwanted practices that may affect our scientific results (such as technology misuse, bonus rewards, publishing under pressure, or indolence for getting accurate results) can be attributed, at least partially, to the liquid characteristic of modern society. We also examine whether the different systems that support science favor these actions, conspiring against what should be the primary goal of science: the search for truth. We finally consider several aspects that should be taken into account to rescue science from the intrusion of weightless actions.

8.
J Gen Physiol ; 152(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32986800

RESUMO

Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.


Assuntos
Cálcio , Retículo Sarcoplasmático , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Teóricos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo
10.
Front Physiol ; 10: 1630, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038301

RESUMO

The present review focusses on the regulation and interplay of cardiac SR Ca2+ handling proteins involved in SR Ca2+ uptake and release, i.e., SERCa2/PLN and RyR2. Both RyR2 and SERCA2a/PLN are highly regulated by post-translational modifications and/or different partners' proteins. These control mechanisms guarantee a precise equilibrium between SR Ca2+ reuptake and release. The review then discusses how disruption of this balance alters SR Ca2+ handling and may constitute a first step toward cardiac damage and malignant arrhythmias. In the last part of the review, this concept is exemplified in different cardiac diseases, like prediabetic and diabetic cardiomyopathy, digitalis intoxication and ischemia-reperfusion injury.

11.
Cardiovasc Res ; 115(3): 556-569, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169578

RESUMO

AIMS: Abnormal Ca2+ release from the sarcoplasmic reticulum (SR), associated with Ca2+-calmodulin kinase II (CaMKII)-dependent phosphorylation of RyR2 at Ser2814, has consistently been linked to arrhythmogenesis and ischaemia/reperfusion (I/R)-induced cell death. In contrast, the role played by SR Ca2+ uptake under these stress conditions remains controversial. We tested the hypothesis that an increase in SR Ca2+ uptake is able to attenuate reperfusion arrhythmias and cardiac injury elicited by increased RyR2-Ser2814 phosphorylation. METHODS AND RESULTS: We used WT mice, which have been previously shown to exhibit a transient increase in RyR2-Ser2814 phosphorylation at the onset of reperfusion; mice with constitutive pseudo-phosphorylation of RyR2 at Ser2814 (S2814D) to exacerbate CaMKII-dependent reperfusion arrhythmias and cardiac damage, and phospholamban (PLN)-deficient-S2814D knock-in (SDKO) mice resulting from crossbreeding S2814D with phospholamban knockout deficient (PLNKO) mice. At baseline, S2814D and SDKO mice had structurally normal hearts. Moreover none of the strains were arrhythmic before ischaemia. Upon cardiac I/R, WT, and S2814D hearts exhibited abundant arrhythmias that were prevented by PLN ablation. In contrast, PLN ablation increased infarct size compared with WT and S2814D hearts. Mechanistically, the enhanced SR Ca2+ sequestration evoked by PLN ablation in SDKO hearts prevented arrhythmogenic events upon reperfusion by fragmenting SR Ca2+ waves into non-propagated and non-arrhythmogenic events (mini-waves). Conversely, the increase in SR Ca2+ sequestration did not reduce but rather exacerbated I/R-induced SR Ca2+ leak, as well as mitochondrial alterations, which were greatly avoided by inhibition of RyR2. These results indicate that the increase in SR Ca2+ uptake is ineffective in preventing the enhanced SR Ca2+ leak of PLN ablated myocytes from either entering into nearby mitochondria and/or activating additional CaMKII pathways, contributing to cardiac damage. CONCLUSION: Our results demonstrate that increasing SR Ca2+ uptake by PLN ablation can prevent the arrhythmic events triggered by CaMKII-dependent phosphorylation of RyR2-induced SR Ca2+ leak. These findings underscore the benefits of increasing SERCA2a activity in the face of SR Ca2+ triggered arrhythmias. However, enhanced SERCA2a cannot prevent but rather exacerbates I/R cardiac injury.


Assuntos
Arritmias Cardíacas/enzimologia , Proteínas de Ligação ao Cálcio/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mitocôndrias Cardíacas/enzimologia , Infarto do Miocárdio/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Frequência Cardíaca , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/patologia , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
12.
Circ J ; 83(1): 41-51, 2018 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-30369562

RESUMO

BACKGROUND: It has been shown that carvedilol and its non ß-blocking analog, VK-II-86, inhibit spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The aim of this study is to determine whether carvedilol and VK-II-86 suppress ouabain-induced arrhythmogenic Ca2+ waves and apoptosis in cardiac myocytes. Methods and Results: Rat cardiac myocytes were exposed to toxic doses of ouabain (50 µmol/L). Cell length (contraction) was monitored in electrically stimulated and non-stimulated conditions. Ouabain treatment increased contractility, frequency of spontaneous contractions and apoptosis compared to control cells. Carvedilol (1 µmol/L) or VK-II-86 (1 µmol/L) did not affect ouabain-induced inotropy, but significantly reduced the frequency of Ca2+ waves, spontaneous contractions and cell death evoked by ouabain treatment. This antiarrhythmic effect was not associated with a reduction in Ca2+ calmodulin-dependent protein kinase II (CaMKII) activity, phospholamban and ryanodine receptor phosphorylation or SR Ca2+ load. Similar results could be replicated in human cardiomyocytes derived from stem cells and in a mathematical model of human myocytes. CONCLUSIONS: Carvedilol and VK-II-86 are effective to prevent ouabain-induced apoptosis and spontaneous contractions indicative of arrhythmogenic activity without affecting inotropy and demonstrated to be effective in human models, thus emerging as a therapeutic tool for the prevention of digitalis-induced arrhythmias and cardiac toxicity.


Assuntos
Cardiotoxicidade/prevenção & controle , Carvedilol , Modelos Cardiovasculares , Ouabaína/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Carvedilol/análogos & derivados , Carvedilol/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ouabaína/farmacologia , Ratos , Ratos Wistar
13.
Sci Rep ; 8(1): 12447, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127403

RESUMO

The Bowditch effect or staircase phenomenon is the increment or reduction of contractile force when heart rate increases, defined as either a positive or negative staircase. The healthy and failing human heart both show positive or negative staircase, respectively, but the causes of these distinct cardiac responses are unclear. Different experimental approaches indicate that while the level of Ca2+ in the sarcoplasmic reticulum is critical, the molecular mechanisms are unclear. Here, we demonstrate that Drosophila melanogaster shows a negative staircase which is associated to a slight but significant frequency-dependent acceleration of relaxation (FDAR) at the highest stimulation frequencies tested. We further showed that the type of staircase is oppositely modified by two distinct SERCA mutations. The dominant conditional mutation SERCAA617T induced positive staircase and arrhythmia, while SERCAE442K accentuated the negative staircase of wild type. At the stimulation frequencies tested, no significant FDAR could be appreciated in mutant flies. The present results provide evidence that two individual mutations directly modify the type of staircase occurring within the heart and suggest an important role of SERCA in regulating the Bowditch effect.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Frequência Cardíaca/fisiologia , Humanos , Mutação/genética , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
14.
J Physiol ; 595(12): 4089-4108, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105734

RESUMO

KEY POINTS: Spontaneous sarcoplasmic reticulum (SR) Ca2+ release events increased in fructose-rich diet mouse (FRD) myocytes vs. control diet (CD) mice, in the absence of significant changes in SR Ca2+ load. In HEK293 cells, hyperglycaemia significantly enhanced [3 H]ryanodine binding and Ca2+ /calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2-S2814 residue vs. normoglycaemia. These increases were prevented by CaMKII inhibition. FRD significantly augmented cardiac apoptosis in WT vs. CD-WT mice, which was prevented by co-treatment with the reactive oxygen species scavenger Tempol. Oxidative stress was also increased in FRD-SR-autocamide inhibitory peptide (AIP) mice, expressing the SR-targeted CaMKII inhibitor AIP, without any significant enhancement of apoptosis vs. CD-SR-AIP mice. FRD produced mitochondrial swelling and membrane depolarization in FRD-WT mice but not in FRD-S2814A mice, in which the CaMKII site on ryanodine receptor 2 was ablated. FRD decreased mitochondrial area, mean Feret diameter and the mean distance between SR and the outer mitochondrial membrane vs. CD hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. ABSTRACT: The impact of cardiac apoptosis in pre-diabetic stages of diabetic cardiomyopathy is unknown. We show that myocytes from fructose-rich diet (FRD) animals exhibit arrhythmias produced by exacerbated Ca2+ /calmodulin-protein kinase (CaMKII) activity, ryanodine receptor 2 (RyR2) phosphorylation and sarcoplasmic reticulum (SR) Ca2+ leak. We tested the hypothesis that this mechanism also underlies cardiac apoptosis in pre-diabetes. We generated a pre-diabetic model in FRD mice. FRD mice showed an increase in oxidative stress, hypertrophy and systolic dysfunction. FRD myocytes exhibited enhanced SR Ca2+ spontaneous events in the absence of SR Ca2+ load alterations vs. control-diet (CD) myocytes. In HEK293 cells, hyperglycaemia significantly enhanced [3 H]ryanodine binding and CaMKII phosphorylation of RyR2-S2814 residue vs. normoglycaemia. CaMKII inhibition prevented hyperglycaemia-induced alterations. FRD also evoked cardiac apoptosis in WT mice vs. CD-WT mice. Co-treatment with the reactive oxygen species scavenger Tempol prevented FRD-induced apoptosis in WT mice. In contrast, FRD enhanced oxidative stress but not apoptosis in FRD-SR-AIP mice, in which a CaMKII inhibitor is targeted to the SR. FRD produced mitochondrial membrane depolarization in WT mice but not in S2814A mice, in which the CaMKII phosphorylation site on RyR2 was ablated. Furthermore, FRD decreased mitochondrial area, mean Feret diameter and mean SR-mitochondrial distance vs. CD-WT hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. CaMKII phosphorylation of RyR2, SR Ca2+ leak and mitochondrial membrane depolarization are critically involved in the apoptotic pathway of the pre-diabetic heart. The FRD-induced decrease in SR-mitochondrial distance is likely to additionally favour Ca2+ transit between the two organelles.


Assuntos
Apoptose/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Intolerância à Glucose/metabolismo , Transdução de Sinais/fisiologia , Animais , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatias/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
15.
Int J Cardiol ; 202: 394-406, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432489

RESUMO

BACKGROUND: Heart failure and arrhythmias occur more frequently in patients with type 2 diabetes (T2DM) than in the general population. T2DM is preceded by a prediabetic condition marked by elevated reactive oxygen species (ROS) and subclinical cardiovascular defects. Although multifunctional Ca2+ calmodulin-dependent protein kinase II (CaMKII) is ROS-activated and CaMKII hyperactivity promotes cardiac diseases, a link between prediabetes and CaMKII in the heart is unprecedented. OBJECTIVES: To prove the hypothesis that increased ROS and CaMKII activity contribute to heart failure and arrhythmogenic mechanisms in early stage diabetes. METHODS-RESULTS: Echocardiography, electrocardiography, biochemical and intracellular Ca2+ (Ca2+i) determinations were performed in fructose-rich diet-induced impaired glucose tolerance, a prediabetes model, in rodents. Fructose-rich diet rats showed decreased contractility and hypertrophy associated with increased CaMKII activity, ROS production, oxidized CaMKII and enhanced CaMKII-dependent ryanodine receptor (RyR2) phosphorylation compared to rats fed with control diet. Isolated cardiomyocytes from fructose-rich diet showed increased spontaneous Ca2+i release events associated with spontaneous contractions, which were prevented by KN-93, a CaMKII inhibitor, or addition of Tempol, a ROS scavenger, to the diet. Moreover, fructose-rich diet myocytes showed increased diastolic Ca2+ during the burst of spontaneous Ca2+i release events. Mice treated with Tempol or with sarcoplasmic reticulum-targeted CaMKII-inhibition by transgenic expression of the CaMKII inhibitory peptide AIP, were protected from fructose-rich diet-induced spontaneous Ca2+i release events, spontaneous contractions and arrhythmogenesis in vivo, despite ROS increases. CONCLUSIONS: RyR2 phosphorylation by ROS-activated CaMKII, contributes to impaired glucose tolerance-induced arrhythmogenic mechanisms, suggesting that CaMKII inhibition could prevent prediabetic cardiovascular complications and/or evolution.


Assuntos
Arritmias Cardíacas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Aminoácidos/metabolismo , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/prevenção & controle , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Cromo/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Frutose/administração & dosagem , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Ácidos Nicotínicos/metabolismo , Fosforilação , Estado Pré-Diabético/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Retículo Sarcoplasmático/metabolismo , Sulfonamidas/farmacologia
16.
Am J Physiol Heart Circ Physiol ; 308(10): H1177-91, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25747749

RESUMO

Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such as Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation but also in cell death, transcriptional activation of hypertrophy, inflammation, and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation, and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Acoplamento Excitação-Contração , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Humanos , Miócitos Cardíacos/fisiologia
17.
J Mol Cell Cardiol ; 79: 69-78, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25451173

RESUMO

Abnormal intracellular Ca(2+) cycling plays a key role in cardiac dysfunction, particularly during the setting of ischemia/reperfusion (I/R). During ischemia, there is an increase in cytosolic and sarcoplasmic reticulum (SR) Ca(2+). At the onset of reperfusion, there is a transient and abrupt increase in cytosolic Ca(2++), which occurs timely associated with reperfusion arrhythmias. However, little is known about the subcellular dynamics of Ca(2+) increase during I/R, and a possible role of the SR as a mechanism underlying this increase has been previously overlooked. The aim of the present work is to test two main hypotheses: (1) An increase diastolic Ca(2+) sparks frequency (cspf) constitutes a mayor substrate for the ischemia-induced diastolic Ca(2+) increase; (2) an increase in cytosolic Ca(2+) pro-arrhythmogenic events (Ca(2+) waves), mediates the abrupt diastolic Ca(2+) rise at the onset of reperfusion. We used confocal microscopy on mouse intact hearts loaded with Fluo-4. Hearts were submitted to global I/R (12/30 min) to assess epicardial Ca(2+) sparks in the whole heart. Intact heart sparks were faster than in isolated myocytes whereas cspf was not different. During ischemia, cspf significantly increased relative to preischemia (2.07±0.33 vs. 1.13±0.20 sp/s/100 µm, n=29/34, 7 hearts). Reperfusion significantly changed Ca(2+) sparks kinetics, by prolonging Ca(2+) sparks rise time and decreased cspf. However, it significantly increased Ca(2+) wave frequency relative to ischemia (0.71±0.14 vs. 0.38±0.06 w/s/100 µm, n=32/33, 7 hearts). The results show for the first time the assessment of intact perfused heart Ca(2+) sparks and provides direct evidence of increased Ca(2+) sparks in ischemia that transform into Ca(2+) waves during reperfusion. These waves may constitute a main trigger for reperfusion arrhythmias.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Coração/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Separação Celular , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Técnicas In Vitro , Cinética , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Perfusão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo
18.
PLoS One ; 9(7): e101871, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003749

RESUMO

Aging is associated to disrupted contractility and rhythmicity, among other cardiovascular alterations. Drosophila melanogaster shows a pattern of aging similar to human beings and recapitulates the arrhythmogenic conditions found in the human heart. Moreover, the kinase CaMKII has been characterized as an important regulator of heart function and an arrhythmogenic molecule that participate in Ca2+ handling. Using a genetically engineered expressed Ca2+ indicator, we report changes in cardiac Ca2+ handling at two different ages. Aging prolonged relaxation, reduced spontaneous heart rate (HR) and increased the occurrence of arrhythmias, ectopic beats and asystoles. Alignment between Drosophila melanogaster and human CaMKII showed a high degree of conservation and indicates that relevant phosphorylation sites in humans are also present in the fruit fly. Inhibition of CaMKII by KN-93 (CaMKII-specific inhibitor), reduced HR without significant changes in other parameters. By contrast, overexpression of CaMKII increased HR and reduced arrhythmias. Moreover, it increased fluorescence amplitude, maximal rate of rise of fluorescence and reduced time to peak fluorescence. These results suggest that CaMKII in Drosophila melanogaster acts directly on heart function and that increasing CaMKII expression levels could be beneficial to improve contractility.


Assuntos
Envelhecimento/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Drosophila melanogaster/metabolismo , Contração Miocárdica , Envelhecimento/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Benzilaminas/farmacologia , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Drosophila melanogaster/genética , Expressão Gênica , Humanos , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Miocárdio/metabolismo , Alinhamento de Sequência , Sulfonamidas/farmacologia
19.
J Mol Cell Cardiol ; 74: 274-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24949568

RESUMO

Ca(2+)-calmodulin kinase II (CaMKII) activation is deleterious in cardiac ischemia/reperfusion (I/R). Moreover, inhibition of CaMKII-dependent phosphorylations at the sarcoplasmic reticulum (SR) prevents CaMKII-induced I/R damage. However, the downstream targets of CaMKII at the SR level, responsible for this detrimental effect, remain unclear. In the present study we aimed to dissect the role of the two main substrates of CaMKII at the SR level, phospholamban (PLN) and ryanodine receptors (RyR2), in CaMKII-dependent I/R injury. In mouse hearts subjected to global I/R (45/120min), phosphorylation of the primary CaMKII sites, S2814 on cardiac RyR2 and of T17 on PLN, significantly increased at the onset of reperfusion whereas PKA-dependent phosphorylation of RyR2 and PLN did not change. Similar results were obtained in vivo, in mice subjected to regional myocardial I/R (1/24h). Knock-in mice with an inactivated serine 2814 phosphorylation site on RyR2 (S2814A) significantly improved post-ischemic mechanical recovery, reduced infarct size and decreased apoptosis. Conversely, knock-in mice, in which CaMKII site of RyR2 is constitutively activated (S2814D), significantly increased infarct size and exacerbated apoptosis. In S2814A and S2814D mice subjected to regional myocardial ischemia, infarct size was also decreased and increased respectively. Transgenic mice with double-mutant non-phosphorylatable PLN (S16A/T17A) in the PLN knockout background (PLNDM) also showed significantly increased post-ischemic cardiac damage. This effect cannot be attributed to PKA-dependent PLN phosphorylation and was not due to the enhanced L-type Ca(2+) current, present in these mice. Our results reveal a major role for the phosphorylation of S2814 site on RyR2 in CaMKII-dependent I/R cardiac damage. In contrast, they showed that CaMKII-dependent increase in PLN phosphorylation during reperfusion opposes rather than contributes to I/R damage.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cálcio/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Morte Celular , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Técnicas de Cultura de Órgãos , Fosforilação , Cultura Primária de Células , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
20.
PLoS One ; 9(4): e96400, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24781001

RESUMO

UNLABELLED: Spontaneously hypertensive rat (SHR) constitutes a genetic model widely used to study the natural evolution of hypertensive heart disease. Ca²âº-handling alterations are known to occur in SHR. However, the putative modifications of Ca²âº-handling proteins during the progression to heart failure (HF) are not well established. Moreover, the role of apoptosis in SHR is controversial. We investigated intracellular Ca²âº, Ca²âº-handling proteins and apoptosis in SHR vs. control Wistar rats (W) from 3 to 15 months (mo). Changes associated with the transition to HF (i.e. lung edema and decrease in midwall fractional shortening), occurred at 15 mo in 38% of SHR (SHRF). In SHRF, twitch and caffeine-induced Ca²âº transients, significantly decreased relative to 6/9 mo and 15 mo without HF signs. This decrease occurred in association with a decrease in the time constant of caffeine-Ca²âº transient decay and an increase in Na⁺/Ca²âº exchanger (NCX) abundance (p<0.05) with no changes in SERCA2a expression/activity. An increased Ca²âº-calmodulin-kinase II activity, associated with an enhancement of apoptosis (TUNEL and Bax/Bcl2) was observed in SHR relative to W from 3 to 15 mo. CONCLUSIONS: 1. Apoptosis is an early and persistent event that may contribute to hypertrophic remodeling but would not participate in the contractile impairment of SHRF. 2. The increase in NCX expression/activity, associated with an increase in Ca²âº efflux from the cell, constitutes a primary alteration of Ca²âº-handling proteins in the evolution to HF. 3. No changes in SERCA2a expression/activity are observed when HF signs become evident.


Assuntos
Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Hipertensão/complicações , Hipertensão/genética , Trocador de Sódio e Cálcio/genética , Regulação para Cima , Animais , Cálcio/metabolismo , Células Cultivadas , Progressão da Doença , Insuficiência Cardíaca/metabolismo , Hipertensão/metabolismo , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Trocador de Sódio e Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...