Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 157(4): 1673-82, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11290722

RESUMO

We present a new method for paternity analysis in natural populations that is based on genotypic data that can take the sampling fraction of putative parents into account. The method allows paternity assignment to be performed in a decision theoretic framework. Simulations are performed to evaluate the utility and robustness of the method and to assess how many loci are necessary for reliable paternity inference. In addition we present a method for testing hypotheses regarding relative reproductive success of different ecologically or behaviorally defined groups as well as a new method for estimating the current population size of males from genotypic data. This method is an extension of the fractional paternity method to the case where only a proportion of all putative fathers have been sampled. It can also be applied to provide abundance estimates of the number of breeding males from genetic data. Throughout, the methods were applied to genotypic data collected from North Atlantic humpback whales (Megaptera novaeangliae) to test if the males that appear dominant during the mating season have a higher reproductive success than the subdominant males.


Assuntos
Teorema de Bayes , Impressão Genômica , Paternidade , Baleias/genética , Animais , Oceano Atlântico , Masculino
2.
Nature ; 388(6644): 767-9, 1997 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-9285587

RESUMO

The ability to recognize individual animals has substantially increased our knowledge of the biology and behaviour of many taxa. However, not all species lend themselves to this approach, either because of insufficient phenotypic variation or because tag attachment is not feasible. The use of genetic markers ('tags') represents a viable alternative to traditional methods of individual recognition, as they are permanent and exist in all individuals. We tested the use of genetic markers as the primary means of identifying individuals in a study of humpback whales in the North Atlantic Ocean. Analysis of six microsatellite loci among 3,060 skin samples collected throughout this ocean allowed the unequivocal identification of individuals. Analysis of 692 'recaptures', identified by their genotype, revealed individual local and migratory movements of up to 10,000 km, limited exchange among summer feeding grounds, and mixing in winter breeding areas, and also allowed the first estimates of animal abundance based solely on genotypic data. Our study demonstrates that genetic tagging is not only feasible, but generates data (for example, on sex) that can be valuable when interpreting the results of tagging experiments.


Assuntos
Marcadores Genéticos , Baleias/genética , Animais , Oceano Atlântico , DNA , Estudos de Viabilidade , Feminino , Masculino , Repetições de Microssatélites , Dinâmica Populacional , Pele
3.
Mol Biol Evol ; 14(4): 355-62, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9100365

RESUMO

Mitochondrial DNA haplotypes of humpback whales show strong segregation between oceanic populations and between feeding grounds within oceans, but this highly structured pattern does not exclude the possibility of extensive nuclear gene flow. Here we present allele frequency data for four microsatellite loci typed across samples from four major oceanic regions: the North Atlantic (two mitochondrially distinct populations), the North Pacific, and two widely separated Antarctic regions, East Australia and the Antarctic Peninsula. Allelic diversity is a little greater in the two Antarctic samples, probably indicating historically greater population sizes. Population subdivision was examined using a wide range of measures, including Fst, various alternative forms of Slatkin's Rst, Goldstein and colleagues' delta mu, and a Monte Carlo approximation to Fisher's exact test. The exact test revealed significant heterogeneity in all but one of the pairwise comparisons between geographically adjacent populations, including the comparison between the two North Atlantic populations, suggesting that gene flow between oceans is minimal and that dispersal patterns may sometimes be restricted even in the absence of obvious barriers, such as land masses, warm water belts, and antitropical migration behavior. The only comparison where heterogeneity was not detected was the one between the two Antarctic population samples. It is unclear whether failure to find a difference here reflects gene flow between the regions or merely lack of statistical power arising from the small size of the Antarctic Peninsula sample. Our comparison between measures of population subdivision revealed major discrepancies between methods, with little agreement about which populations were most and least separated. We suggest that unbiased Rst (URst, see Goodman 1995) is currently the most reliable statistic, probably because, unlike the other methods, it allows for unequal sample sizes. However, in view of the fact that these alternative measures often contradict one another, we urge caution in the use of microsatellite data to quantify genetic distance.


Assuntos
DNA Satélite/genética , Variação Genética , Baleias/genética , Alelos , Animais , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...