Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 21(12): e13739, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403077

RESUMO

Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti-adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine- and cysteine-titrated diets, we demonstrate that the anti-adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non-glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck-M. In mice, the magnitude of SAAR-induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age-at-onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross-sectional epidemiological study. Controlled feeding of low-SAA, high-polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.


Assuntos
Aminoácidos Sulfúricos , Cisteína , Masculino , Feminino , Camundongos , Humanos , Animais , Cisteína/metabolismo , Metabolismo dos Lipídeos , Estudos Transversais , Aminoácidos Sulfúricos/metabolismo , Metionina/metabolismo , Obesidade/metabolismo , Serina/metabolismo
2.
J Gerontol A Biol Sci Med Sci ; 76(11): 1922-1929, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33106871

RESUMO

Diet can affect health and longevity by altering the gut microbiome profile. Sulfur amino acid restriction (SAAR), like caloric restriction, extends lifespan. But, its effect on the gut microbiome profile and functional significance of such effects are understudied. We investigated whether SAAR alters the gut microbiome profile and bile acid composition, an index of microbial metabolism. We also compared these changes with those induced by a 12% low-calorie diet (LCD). Male 21-week-old C57BL6/J mice were fed control (CD; 0.86% methionine), SAAR (0.12% methionine), and LCD diets (0.86% methionine). After 10 weeks on the diet, plasma markers and fecal microbial profiles were determined. SAAR mice had lower body weights and IGF-1, and higher food intake and FGF-21 than CD mice. Compared to SAAR mice, LCD mice had higher body weights, and lower FGF-21 and food intake, but similar IGF-1. ß-Diversity indices were different between SAAR and LCD, and LCD and CD, but not between CD and SAAR. In groupwise comparisons of individual taxa, differences were more discernable between SAAR and LCD than between other groups. Abundances of Firmicutes, Clostridiaceae, and Turicibacteraceae were higher, but Verrucomicrobia was lower in SAAR than in LCD. Secondary bile acids and the ratio of secondary to primary bile acids were lower in SAAR than in LCD. SAAR favored bile acid conjugation with glycine at the expense of taurine. Overall, SAAR and LCD diets induced distinct changes in the gut microbiome and bile acid profiles. Additional studies on the role of these changes in improving health and lifespan are warranted.


Assuntos
Aminoácidos Sulfúricos , Restrição Calórica , Microbioma Gastrointestinal , Animais , Ácidos e Sais Biliares , Peso Corporal , Fator de Crescimento Insulin-Like I , Masculino , Metionina , Camundongos , Camundongos Endogâmicos C57BL
3.
Aging Cell ; 19(7): e13177, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32573078

RESUMO

Trade-offs in life-history traits are clinically and mechanistically important. Sulfur amino acid restriction (SAAR) extends lifespan. But whether this benefit comes at the cost of other traits including stress resistance and growth is unclear. We investigated the effects of SAAR on growth markers (body weight, IGF1, and IGFBP3) and physiological stresses. Male-F344 rats were fed control (0.86% Met) and SAAR (0.17% Met) diets starting at 2, 10, and 20 months. Rats were injected with keyhole-limpet-hemocyanin (KLH) to measure immune responses (anti-KLH-IgM, anti-KLH-IgG, and delayed-type-hypersensitivity [DTH]). Markers of ER stress (FGF21 and adiponectin), detoxification capacity (glutathione [GSH] concentrations, GSH-S-transferase [GST], and cytochrome-P450 -reductase [CPR] activities), and low-grade inflammation (C-reactive protein [CRP]) were also determined. SAAR decreased body weight, liver weight, food intake, plasma IGF1, and IGFBP3; the effect size diminished with increasing age-at-onset. SAAR increased FGF21 and adiponectin, but stress damage markers GRP78 and Xbp1s/us were unchanged, suggesting that ER stress is hormetic. SAAR increased hepatic GST activity despite lower GSH, but CPR activity was unchanged, indicative of enhanced detoxification capacity. Other stress markers were either uncompromised (CRP, anti-KLH-IgM, and DTH) or slightly lower (anti-KLH-IgG). Increases in stress markers were similar across all ages-at-onset, except for adiponectin, which peaked at 2 months. Overall, SAAR did not compromise stress responses and resulted in maximal benefits with young-onset. In survival studies, median lifespan extension with initiation at 52 weeks was 7 weeks (p = .05); less than the 33.5-week extension observed in our previous study with 7-week initiation. Findings support SAAR translational studies and the need to optimize Met dose based on age-at-onset.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Biomarcadores/metabolismo , Idade de Início , Animais , Masculino , Ratos , Ratos Endogâmicos F344
4.
Obesity (Silver Spring) ; 28(6): 1075-1085, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32348021

RESUMO

OBJECTIVE: Identifying novel approaches to combat obesity is important to improve health span. It was hypothesized that methionine restriction (MR) will induce weight loss in obese mice by reducing adipose tissue mass caused by increased energy expenditure and reprogramming of adipose tissue homeostasis. The roles of adiponectin (ADIPOQ) and fibroblast growth factor 21 (FGF21) during weight loss in MR mice were also tested. METHODS: Diet-induced obese (DIO) male C57BL/6J (wild type), Adipoq-deficient (Adipoq knockout [KO]), Fgf21-KO, and Adipoq-Fgf21 double-KO mice were used. Following a switch to high-fat control (DIO-CF, 60% fat/0.86% methionine) or MR (DIO-MR, 60% fat/0.12% methionine) diet, physiological parameters were measured, and inguinal and perigonadal adipose tissues were examined. RESULTS: Obese mice subjected to MR showed loss of body weight and adiposity, increased energy expenditure, and improved glucose tolerance that were independent of the actions of ADIPOQ and FGF21. MR induced reduction of circulating lipids, glucose, insulin, leptin, and insulin like growth factor 1 and increased ß-hydroxybutyrate, ADIPOQ, and FGF21 concentrations. In fat, MR upregulated protein levels of adipose triglyceride lipase, apoptosis-inducing factor, lysosomal-associated membrane proteins 1 and 2, autophagy-related protein 5, beclin-1, and light chain 3B I and II. CONCLUSIONS: MR reduction of adipose tissue mass in obese mice is associated with elevated lipolysis, apoptosis, and autophagy and occurs independently of the actions of ADIPOQ and FGF21.


Assuntos
Adiponectina/metabolismo , Adiposidade/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Metionina/metabolismo , Camundongos Obesos/genética , Redução de Peso/fisiologia , Animais , Masculino , Camundongos
5.
Ann N Y Acad Sci ; 1418(1): 80-94, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377163

RESUMO

The mechanisms underlying life span extension by sulfur amino acid restriction (SAAR) are unclear. Cysteine and methionine are essential for the biosynthesis of proteins and glutathione (GSH), a major redox buffer in the endoplasmic reticulum (ER). We hypothesized that SAAR alters protein synthesis by modulating the redox milieu. Male F344-rats were fed control (CD: 0.86% methionine without cysteine) and SAAR diets (0.17% methionine without cysteine) for 12 weeks. Growth rates, food intake, cysteine and GSH levels, proteins associated with redox status and translation, and fractional protein synthesis rates (FSRs) were determined in liver. Despite a 40% higher food intake, growth rates for SAAR rats were 27% of those fed CD. Hepatic free cysteine in SAAR rats was 55% compared with CD rats. SAAR altered tissue distribution of GSH, as hepatic and erythrocytic levels were 56% and 196% of those in CD rats. Lower GSH levels did not induce ER stress (i.e., unchanged expression of Xbp1s , Chop, and Grp78), but activated PERK and its substrates eIF2-α and NRF2. SAAR-induced changes in translation-initiation machinery (higher p-eIF2-α and 4E-BP1, and lower eIF4G-1) resulted in slower protein synthesis rates (53% of CD). Proteins involved in the antioxidant response (NRF2, KEAP1, GCLM, and NQO1) and protein folding (PDI and ERO1-α) were increased in SAAR. Lower FSR and efficient protein folding might be improving proteostasis in SAAR.


Assuntos
Aminoácidos Sulfúricos/farmacologia , Dieta , Biossíntese de Proteínas , Proteínas/metabolismo , Aminoácidos Sulfúricos/administração & dosagem , Animais , Biomarcadores/metabolismo , Cisteína/metabolismo , Estresse do Retículo Endoplasmático , Eritrócitos/metabolismo , Comportamento Alimentar , Glutationa/sangue , Glutationa/metabolismo , Crescimento , Fígado/metabolismo , Longevidade , Masculino , Tamanho do Órgão/efeitos dos fármacos , Oxirredução , Ratos , Ratos Endogâmicos F344
6.
Exp Gerontol ; 88: 1-8, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940170

RESUMO

Despite well-documented evidence for lifespan extension by methionine restriction (MR), underlying mechanisms remain unknown. As methionine can alter S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the substrate and product of DNA methyltransferase-1 (DNMT1), we hypothesized that MR diet alters DNA methylation. Young (8-week-old) and adult (1-year-old) male C57BL/6J mice were fed diets with different levels of methionine (0.12%-MR, 0.84%-CD) for 12weeks. Functional indicators of DNA methylation, including global methylation (GM), gene-specific methylation (GSM) and LINE-1 methylation; and biochemical factors affecting DNA methylation, SAH, SAM, and DNMT1 were assessed in different tissues. MR altered DNA methylation depending on the age of intervention. While MR had no effect on hepatic GM in young animals, it increased GM by 27% over CD in adults (p<0.01). In comparison with young animals, hepatic GM levels were 17% lower in CD adults (p<0.05), but not different in MR adults. The MR-induced increase in hepatic GM was associated with a 38% decrease in SAH levels in adults (p<0.001), with SAH and GM levels being negatively correlated (r2=0.33, p<0.001). No changes were observed in DNMT protein levels in liver. In adipose tissue, MR caused a 6% decline in GM in adults (p<0.05), a corresponding 2-fold increase in SAH (p<0.05), and a 2-fold decrease in DNMT1 (p<0.01). MR caused both increases and decreases in GSM of liver and adipose. No changes were observed in LINE-1. Together, these findings provide evidence for protective effects of MR diet on hepatic DNA hypomethylation in adults, apparently mediated by SAH. These findings also indicate that altered DNA methylation might be playing a role in benefits conferred by MR diet.


Assuntos
Envelhecimento , Restrição Calórica , Metilação de DNA/efeitos dos fármacos , Fígado/metabolismo , Metionina/farmacologia , Animais , Dieta , Fígado/efeitos dos fármacos , Masculino , Metionina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
7.
Cell Metab ; 22(5): 861-73, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26411344

RESUMO

S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) link one-carbon metabolism to methylation status. However, it is unknown whether regulation of SAM and SAH by nutrient availability can be directly sensed to alter the kinetics of key histone methylation marks. We provide evidence that the status of methionine metabolism is sufficient to determine levels of histone methylation by modulating SAM and SAH. This dynamic interaction led to rapid changes in H3K4me3, altered gene transcription, provided feedback regulation to one-carbon metabolism, and could be fully recovered upon restoration of methionine. Modulation of methionine in diet led to changes in metabolism and histone methylation in the liver. In humans, methionine variability in fasting serum was commensurate with concentrations needed for these dynamics and could be partly explained by diet. Together these findings demonstrate that flux through methionine metabolism and the sensing of methionine availability may allow direct communication to the chromatin state in cells.


Assuntos
Carbono/metabolismo , Epigênese Genética/genética , Histonas/metabolismo , Metionina/metabolismo , Animais , Cromatina/genética , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Fígado/metabolismo , Metilação , Camundongos , Transferases de Grupo de Um Carbono/genética , Transferases de Grupo de Um Carbono/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
8.
Metabolism ; 62(11): 1651-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23928105

RESUMO

OBJECTIVE: This study investigated the effects of dietary methionine restriction (MR) on the progression of established hepatic steatosis in the leptin-deficient ob/ob mouse. MATERIAL/METHODS: Ten-week-old ob/ob mice were fed diets containing 0.86% (control-fed; CF) or 0.12% methionine (MR) for 14 weeks. At 14 weeks, liver and fat were excised and blood was collected for analysis. In another study, blood was collected to determine in vivo triglyceride (TG) and very-low-density lipoprotein (VLDL) secretion rates. Liver histology was conducted to determine the severity of steatosis. Hepatic TG, free fatty acid levels, and fatty acid oxidation (FAO) were also measured. Gene expression was analyzed by quantitative PCR. RESULTS: MR reversed the severity of steatosis in the ob/ob mouse. This was accompanied by reduced body weight despite similar weight-specific food intake. Compared with the CF group, hepatic TG levels were significantly reduced in response to MR, but adipose tissue weight was not decreased. MR reduced insulin and HOMA ratios but increased total and high-molecular-weight adiponectin levels. Scd1 gene expression was significantly downregulated, while Acadvl, Hadha, and Hadhb were upregulated in MR, corresponding with increased ß-hydroxybutyrate levels and a trend toward increased FAO. The VLDL secretion rate was also significantly increased in the MR mice, as were the mRNA levels of ApoB and Mttp. The expression of inflammatory markers, such as Tnf-α and Ccr2, was also downregulated by MR. CONCLUSIONS: Our data indicate that MR reverses steatosis in the ob/ob mouse liver by promoting FAO, increasing the export of lipids, and reducing obesity-related inflammatory responses.


Assuntos
Ácidos Graxos/metabolismo , Fígado Gorduroso/prevenção & controle , Leptina/deficiência , Metabolismo dos Lipídeos , Fígado/metabolismo , Metionina/administração & dosagem , Metionina/farmacologia , Obesidade/metabolismo , Ácido 3-Hidroxibutírico/sangue , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dieta , Progressão da Doença , Fígado Gorduroso/sangue , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Homeostase , Inflamação/etiologia , Inflamação/metabolismo , Insulina/metabolismo , Lipoproteínas VLDL/sangue , Masculino , Camundongos , Camundongos Obesos , Obesidade/sangue , Obesidade/patologia , Oxirredução , Índice de Gravidade de Doença , Triglicerídeos/sangue
9.
Metabolism ; 62(4): 509-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23154184

RESUMO

OBJECTIVES: Methionine-restricted (MR) rats, which are lean and insulin sensitive, have low serum total cysteine (tCys) and taurine and decreased hepatic expression and activity indices of stearoyl-coenzyme A desaturase-1 (SCD1). These effects are partly or completely reversed by cysteine supplementation. We investigated whether reversal of MR phenotypes can be achieved by other sulfur compounds, namely taurine or N-acetylcysteine (NAC). METHODS: MR and control-fed (CF) rats were supplemented with taurine (0.5%) or NAC (0.5%) for 12weeks. Adiposity, serum sulfur amino acids (SAA), Scd1 gene expression in liver and white adipose tissue, and SCD1 activity indices (calculated from serum fatty acid profile) were monitored. RESULTS: Taurine supplementation of MR rats did not restore weight gain or hepatic Scd1 expression or indices to CF levels, but further decreased adiposity. Taurine supplementation of CF rats did not affect adiposity, but lowered triglyceridemia. NAC supplementation in MR rats raised tCys and partly or completely reversed MR effects on weight, fat %, Scd1 expression in liver and white adipose tissue, and estimated SCD1 activity. In CF rats, NAC decreased body fat % and lowered SCD1-18 activity index (P<0.001). Serum triglycerides and leptin were over 40% lower in CF+NAC relative to CF rats (P≤0.003 for both). In all groups, change in tCys correlated with change in SCD1-16 index (partial r=0.60, P<0.001) independent of other SAA. CONCLUSION: The results rule out taurine as a mediator of increased adiposity produced by cysteine in MR, and show that NAC, similar to L-cysteine, blocks anti-obesity effects of MR. Our data show that dietary SAA can influence adiposity in part through mechanisms that converge on SCD1 function. This may have implications for understanding and preventing human obesity.


Assuntos
Acetilcisteína/farmacologia , Adiposidade/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Metionina/deficiência , Taurina/farmacologia , Aminoácidos/sangue , Aminoácidos Sulfúricos/metabolismo , Animais , Cisteína/sangue , Dieta , Ácidos Graxos não Esterificados/sangue , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lipídeos/sangue , Masculino , Ratos , Ratos Endogâmicos F344 , Estearoil-CoA Dessaturase/biossíntese , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Aumento de Peso/efeitos dos fármacos
10.
J Nutrigenet Nutrigenomics ; 5(3): 132-57, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23052097

RESUMO

BACKGROUND/AIMS: Methionine restriction (MR) is a dietary intervention that increases lifespan, reduces adiposity and improves insulin sensitivity. These effects are reversed by supplementation of the MR diet with cysteine (MRC). Genomic and metabolomic studies were conducted to identify potential mechanisms by which MR induces favorable metabolic effects, and that are reversed by cysteine supplementation. METHODS: Gene expression was examined by microarray analysis and TaqMan quantitative PCR. Levels of selected proteins were measured by Western blot and metabolic intermediates were analyzed by mass spectrometry. RESULTS: MR increased lipid metabolism in inguinal adipose tissue and quadriceps muscle while it decreased lipid synthesis in liver. In inguinal adipose tissue, MR not only caused the transcriptional upregulation of genes associated with fatty acid synthesis but also of Lpin1, Pc, Pck1 and Pdk1, genes that are associated with glyceroneogenesis. MR also upregulated lipolysis-associated genes in inguinal fat and led to increased oxidation in this tissue, as suggested by higher levels of methionine sulfoxide and 13-HODE + 9-HODE compared to control-fed (CF) rats. Moreover, MR caused a trend toward the downregulation of inflammation-associated genes in inguinal adipose tissue. MRC reversed most gene and metabolite changes induced by MR in inguinal adipose tissue, but drove the expression of Elovl6, Lpin1, Pc, and Pdk1 below CF levels. In liver, MR decreased levels of a number of long-chain fatty acids, glycerol and glycerol-3-phosphate corresponding with the gene expression data. Although MR increased the expression of genes associated with carbohydrate metabolism, levels of glycolytic intermediates were below CF levels. MR, however, stimulated gluconeogenesis and ketogenesis in liver tissue. As previously reported, sulfur amino acids derived from methionine were decreased in liver by MR, but homocysteine levels were elevated. Increased liver homocysteine levels by MR were associated with decreased cystathionine ß-synthase (CBS) protein levels and lowered vitamin B6 and 5-methyltetrahydrofolate (5MeTHF) content. Finally, MR upregulated fibroblast growth factor 21 (FGF21) gene and protein levels in both liver and adipose tissues. MRC reversed some of MR's effects in liver and upregulated the transcription of genes associated with inflammation and carcinogenesis such as Cxcl16, Cdh17, Mmp12, Mybl1, and Cav1 among others. In quadriceps muscle, MR upregulated lipid metabolism-associated genes and increased 3-hydroxybutyrate levels suggesting increased fatty acid oxidation as well as stimulation of gluconeogenesis and glycogenolysis in this tissue. CONCLUSION: Increased lipid metabolism in inguinal adipose tissue and quadriceps muscle, decreased triglyceride synthesis in liver and the downregulation of inflammation-associated genes are among the factors that could favor the lean phenotype and increased insulin sensitivity observed in MR rats.


Assuntos
Tecido Adiposo/metabolismo , Cisteína/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Músculo Quadríceps/metabolismo , Animais , Carboidratos/química , Cistationina beta-Sintase/metabolismo , Dieta , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gluconeogênese , Inflamação , Cetonas/metabolismo , Metabolismo dos Lipídeos , Masculino , Espectrometria de Massas/métodos , Nutrigenômica , Ratos , Ratos Endogâmicos F344 , Tetra-Hidrofolatos/metabolismo , Distribuição Tecidual
11.
J Lipid Res ; 52(1): 104-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20871132

RESUMO

Stearoyl-CoA desaturase-1 (SCD1) is a key enzyme in fatty acid and energy metabolism, but little is known about its nutritional regulation. Dietary methionine restriction in rats decreases hepatic Scd1 mRNA and protein, increases energy expenditure, and decreases fat-pad mass/body-weight% (FM/BW%). In humans, plasma concentrations of the methionine product, cysteine, are associated with obesity. To determine which consequences of methionine-restriction are mediated by decreased cysteine availability, we monitored obesity-related variables in 4 dietary groups for 12 weeks: control-fed (CF), methionine-restricted (MR), MR supplemented with 0.5% l-cysteine (MR+Cys) and CF+Cys rats. MR lowered weight gain and FM/BW% despite higher food intake/weight than CF, and lowered serum cysteine. Hepatic Scd1 expression was decreased, with decreased serum SCD1 activity indices (calculated from serum fatty acid profile), decreased serum insulin, leptin and triglycerides, and higher adiponectin. Cysteine supplementation (MR+Cys) essentially reversed all these phenotypes and raised serum cysteine but not methionine to CF levels. Adding extra cysteine to control diet (CF+Cys) increased serum taurine but did not affect serum cysteine, lipids, proteins, or total weight gain. FM/BW% and serum leptin were modestly decreased. Our results indicate that anti-obesity effects of MR are caused by low cysteine and that dietary sulfur amino acid composition contributes to SCD1 regulation.


Assuntos
Adiposidade/fisiologia , Cisteína/administração & dosagem , Metionina/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Adipocinas/sangue , Adipocinas/metabolismo , Animais , Peso Corporal , Cisteína/sangue , Cisteína/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344 , Estearoil-CoA Dessaturase/genética , Taurina/sangue
12.
Metabolism ; 59(7): 1000-11, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20045141

RESUMO

Methionine restriction increases life span in rats and mice and reduces age-related accretion of adipose tissue in Fischer 344 rats. Recent reports have shown that adipose tissue mitochondrial content and function are associated with adiposity; therefore, the expression of genes involved in mitochondrial biogenesis and oxidative capacity was examined in white adipose tissue, liver, and skeletal muscle from Fischer 344 rats fed control (0.86% methionine) or methionine-restricted (0.17% methionine) diets for 3 months. Methionine restriction induced transcriptional changes of peroxisome proliferator-activated receptors, peroxisome proliferator-activated receptor coactivators 1alpha and 1beta, and some of their known target genes in all of these tissues. In addition, tissue-specific responses were elicited at the protein level. In inguinal adipose tissue, methionine restriction increased protein levels of peroxisome proliferator-activated receptor and peroxisome proliferator-activated receptor coactivator target genes. It also induced mitochondrial DNA copy number, suggesting mitochondrial biogenesis and corresponding with the up-regulation of citrate synthase activity. In contrast, methionine restriction induced changes in mitochondrial glycerol-3-phosphate dehydrogenase activity and stearoyl-coenzyme A desaturase 1 protein levels only in liver and uncoupling protein 3 and cytochrome c oxidase subunit IV protein levels only in skeletal muscle. No increase in mitochondrial DNA copy number was observed in liver and skeletal muscle despite an increase in mitochondrial citrate synthase activity. The results indicate that adiposity resistance in methionine-restricted rats is associated with mitochondrial biogenesis in inguinal adipose tissue and increased mitochondrial aerobic capacity in liver and skeletal muscle.


Assuntos
Tecido Adiposo Branco/fisiologia , Aerobiose/fisiologia , Fígado/fisiologia , Metionina/fisiologia , Mitocôndrias Hepáticas/fisiologia , Mitocôndrias/fisiologia , Músculo Esquelético/fisiologia , Tecido Adiposo Branco/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Adiposidade/fisiologia , Animais , Western Blotting , Peso Corporal/fisiologia , Citrato (si)-Sintase/metabolismo , DNA Mitocondrial/metabolismo , Expressão Gênica/genética , Expressão Gênica/fisiologia , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Tamanho do Órgão/fisiologia , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estearoil-CoA Dessaturase/metabolismo
13.
Nutrition ; 26(11-12): 1201-4, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20080389

RESUMO

OBJECTIVE: Dietary methionine restriction in Fischer-344 rats favorably influences visceral fat mass, insulin sensitivity, metabolic parameters, and longevity. However, little is known about the effects of methionine restriction on serum methionine and its downstream sulfur amino acids. We investigated the serum sulfur amino acid profile of male Fischer-344 rats fed a methionine-restricted diet for 3 mo. METHODS AND RESULTS: Using tandem mass spectrometry, we observed marked reduction in serum concentrations of methionine, cystathionine, cysteine, and taurine in methionine-restricted rats compared with control (P<0.001) and a 2.5-fold elevation of homocysteine (P<0.001). CONCLUSION: This suggests that homocysteine trans-sulfuration may be inhibited by methionine restriction, and that some of the effects of methionine restriction may be mediated by changes in sulfur amino acids downstream of methionine.


Assuntos
Aminoácidos Sulfúricos/sangue , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/etiologia , Metionina/deficiência , Metionina/metabolismo , Adiposidade , Aminoácidos Sulfúricos/química , Animais , Peso Corporal , Cistationina/sangue , Cistationina/química , Cisteína/sangue , Cisteína/química , Dieta/efeitos adversos , Homocisteína/sangue , Homocisteína/química , Homocisteína/metabolismo , Hiper-Homocisteinemia/metabolismo , Gordura Intra-Abdominal , Masculino , Metionina/sangue , Metionina/química , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Taurina/sangue , Taurina/química
14.
J Lipid Res ; 49(1): 12-23, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17909224

RESUMO

Methionine restriction (MR) limits age-related adiposity in Fischer 344 (F344) rats. To assess the mechanism of adiposity resistance, the effect of MR on adipose tissue (AT) 11beta-hydroxysteroid dehydrogenase-1 (11beta-HSD1) was examined. MR induced 11beta-HSD1 activity in all ATs, correlating with increased tissue corticosterone. However, an inverse relationship between 11beta-HSD1 activity and adipocyte size was observed. Because dietary restriction controls lipogenic and lipolytic rates, MR's effects on lipogenic and lipolytic enzymes were evaluated. MR increased adipose triglyceride lipase and acetyl-coenzyme A carboxylase (ACC) protein levels but induced ACC phosphorylation at serine residues that render the enzyme inactive, suggesting alterations of basal lipolysis and lipogenesis. In contrast, no changes in basal or phosphorylated hormone-sensitive lipase levels were observed. ACC-phosphorylated sites were specific for AMP-activated protein kinase (AMPK); therefore, AMPK activation was evaluated. Significant differences in AMPKalpha protein, phosphorylation, and activity levels were observed only in retroperitoneal fat from MR rats. No differences in protein kinase A phosphorylation and intracellular cAMP levels were detected. In vitro studies revealed increased lipid degradation and a trend toward increased lipid synthesis, suggesting the presence of a futile cycle. In conclusion, MR disrupts the lipogenic/lipolytic balance, contributing importantly to adiposity resistance in F344 rats.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Acetil-CoA Carboxilase/metabolismo , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Metionina/deficiência , Proteínas Quinases Ativadas por AMP , Adipócitos/citologia , Adipócitos/enzimologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/enzimologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lipogênese , Lipólise , Complexos Multienzimáticos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...