Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 11(47): 44438-44443, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31663719

RESUMO

Strain engineering is one of the most effective approaches to manipulate the physical state of materials, control their electronic properties, and enable crucial functionalities. Because of their rich phase diagrams arising from competing ground states, quantum materials are an ideal playground for on-demand material control and can be used to develop emergent technologies, such as adaptive electronics or neuromorphic computing. It was recently suggested that complex oxides could bring unprecedented functionalities to the field of nanomechanics, but the possibility of precisely controlling the stress state of materials is so far lacking. Here, we demonstrate the wide and reversible manipulation of the stress state of single-crystal WO3 by strain engineering controlled by catalytic hydrogenation. Progressive incorporation of hydrogen in freestanding ultrathin structures determines large variations of their mechanical resonance frequencies, inducing static deformation. Our results demonstrate hydrogen doping as a new paradigm to reversibly manipulate the mechanical properties of nanodevices based on materials control.

3.
Phys Rev Lett ; 122(19): 196602, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144912

RESUMO

Nonequilibrium steady state conditions induced by a dc current can alter the physical properties of strongly correlated electron systems. In this regard, it was recently shown that dc current can trigger novel electronic states, such as current-induced diamagnetism, which cannot be realized in equilibrium conditions. However, reversible control of diamagnetism has not been achieved yet. Here, we demonstrate reversible in situ control between a Mott insulating state and a diamagnetic semimetal-like state by a dc current in the Ti-substituted bilayer ruthenate Ca_{3}(Ru_{1-x}Ti_{x})_{2}O_{7} (x=0.5%). By performing simultaneous magnetic and resistive measurements, we map out the temperature vs current-density phase diagram in the nonequilibrium steady state of this material. The present results open up the possibility of creating novel electronic states in a variety of strongly correlated electron systems under dc current.

4.
ACS Appl Nano Mater ; 1(7): 3446-3452, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30087952

RESUMO

Hydrogen-related technologies are rapidly developing, driven by the necessity of efficient and high-density energy storage. This poses new challenges to the detection of dangerous gases, in particular the realization of cheap, sensitive, and fast hydrogen sensors. Several materials are being studied for this application, but most present critical bottlenecks, such as high operational temperature, low sensitivity, slow response time, and/or complex fabrication procedures. Here, we demonstrate that WO3 in the form of single-crystal, ultrathin films with a Pt catalyst allows high-performance sensing of H2 gas at room temperature. Thanks to the high electrical resistance in the pristine state, this material is able to detect hydrogen concentrations down to 1 ppm near room temperature. Moreover, the high surface-to-volume ratio of WO3 ultrathin films determines fast sensor response and recovery, with characteristic times as low as 1 s when the concentration exceeds 100 ppm. By modeling the hydrogen (de)intercalation dynamics with a kinetic model, we extract the energy barriers of the relevant processes and relate the doping mechanism to the formation of oxygen vacancies. Our results reveal the potential of single-crystal WO3 ultrathin films toward the development of sub-ppm hydrogen detectors working at room temperature.

5.
ACS Appl Mater Interfaces ; 9(48): 42336-42343, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29111647

RESUMO

Interfaces between complex oxides constitute a unique playground for two-dimensional electron systems (2DESs), where superconductivity and magnetism can arise from combinations of bulk insulators. The 2DES at the LaAlO3/SrTiO3 interface is one of the most studied in this regard, and its origin is determined by the polar field in LaAlO3 as well as by the presence of point defects, like oxygen vacancies and intermixed cations. These defects usually reside in the conduction channel and are responsible for a decrease of the electronic mobility. In this work, we use an amorphous WO3 overlayer to obtain a high-mobility 2DES in WO3/LaAlO3/SrTiO3 heterostructures. The studied system shows a sharp insulator-to-metal transition as a function of both LaAlO3 and WO3 layer thickness. Low-temperature magnetotransport reveals a strong magnetoresistance reaching 900% at 10 T and 1.5 K, the presence of multiple conduction channels with carrier mobility up to 80 000 cm2 V-1 s-1, and quantum oscillations of conductance.

6.
Adv Mater ; 29(35)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714094

RESUMO

Relaxation oscillators consist of periodic variations of a physical quantity triggered by a static excitation. They are a typical consequence of nonlinear dynamics and can be observed in a variety of systems. VO2 is a correlated oxide with a solid-state phase transition above room temperature, where both electrical resistance and lattice parameters undergo a drastic change in a narrow temperature range. This strong nonlinear response allows to realize spontaneous electrical oscillations in the megahertz range under a DC voltage bias. These electrical oscillations are employed to set into mechanical resonance a microstructure without the need of any active electronics, with small power consumption and with the possibility to selectively excite specific flexural modes by tuning the value of the DC electrical bias in a range of few hundreds of millivolts. This actuation method is robust and flexible and can be implemented in a variety of autonomous DC-powered devices.

7.
ACS Nano ; 7(12): 11310-6, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24224765

RESUMO

The achievement of controlled high n-type doping in Ge will enable the fabrication of a number of innovative nanoelectronic and photonic devices. In this work, we present a combined scanning tunneling microscopy, secondary ions mass spectrometry, and magnetotransport study to understand the atomistic doping process of Ge by P2 molecules. Harnessing the one-dimer footprint of P2 molecules on the Ge(001) surface, we achieved the incorporation of a full P monolayer in Ge using a relatively low process temperature. The consequent formation of P-P dimers, however, limits electrical activation above a critical donor density corresponding to P-P spacing of less than a single dimer row. With this insight, tuning of doping parameters allows us to repeatedly stack such 2D P layers to achieve 3D electron densities up to ∼2 × 10(20) cm(-3).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...