Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 1046551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569127

RESUMO

Objective: To evaluate the performance of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET/CT) radiomic features to predict overall survival (OS) in patients with locally advanced uterine cervical carcinoma. Methods: Longitudinal and retrospective study that evaluated 50 patients with cervical epidermoid carcinoma (clinical stage IB2 to IVA according to FIGO). Segmentation of the 18F-FDG PET/CT tumors was performed using the LIFEx software, generating the radiomic features. We used the Mann-Whitney test to select radiomic features associated with the clinical outcome (death), excluding the features highly correlated with each other with Spearman correlation. Subsequently, ROC curves and a Kaplan-Meier analysis were performed. A p-value < 0.05 were considered significant. Results: The median follow-up was 23.5 months and longer than 24 months in all surviving patients. Independent predictors for OS were found-SUVpeak with an AUC of 0.74, sensitivity of 77.8%, and specificity of 72.7% (p = 0.006); and the textural feature gray-level run-length matrix GLRLM_LRLGE, with AUC of 0.74, sensitivity of 72.2%, and specificity of 81.8% (p = 0.005). When we used the derived cut-off points from these ROC curves (12.76 for SUVpeak and 0.001 for GLRLM_LRLGE) in a Kaplan-Meier analysis, we can see two different groups (one with an overall survival probability of approximately 90% and the other with 30%). These biomarkers are independent of FIGO staging. Conclusion: By radiomic 18F-FDG PET/CT data analysis, SUVpeak and GLRLM_LRLGE textural feature presented the best performance to predict OS in patients with cervical cancer undergoing chemo-radiotherapy and brachytherapy.

2.
J Biomol Struct Dyn ; 40(22): 11948-11967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34463205

RESUMO

The disease caused by the new type of coronavirus, Covid-19, has posed major public health challenges for many countries. With its rapid spread, since the beginning of the outbreak in December 2019, the disease transmitted by SARS-CoV-2 has already caused over 2 million deaths to date. In this work, we propose a web solution, called Heg.IA, to optimize the diagnosis of Covid-19 through the use of artificial intelligence. Our system aims to support decision-making regarding to diagnosis of Covid-19 and to the indication of hospitalization on regular ward, semi-ICU or ICU based on decision a Random Forest architecture with 90 trees. The main idea is that healthcare professionals can insert 41 hematological parameters from common blood tests and arterial gasometry into the system. Then, Heg.IA will provide a diagnostic report. The system reached good results for both Covid-19 diagnosis and to recommend hospitalization. For the first scenario we found average results of accuracy of 92.891%±0.851, kappa index of 0.858 ± 0.017, sensitivity of 0.936 ± 0.011, precision of 0.923 ± 0.011, specificity of 0.921 ± 0.012 and area under ROC of 0.984 ± 0.003. As for the indication of hospitalization, we achieved excellent performance of accuracies above 99% and more than 0.99 for the other metrics in all situations. By using a computationally simple method, based on the classical decision trees, we were able to achieve high diagnosis performance. Heg.IA system may be a way to overcome the testing unavailability in the context of Covid-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Algoritmo Florestas Aleatórias , Inteligência Artificial , Testes Hematológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...