Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 590, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33437005

RESUMO

Nanoscale composite of detonation nanodiamond (DND) and polypyrrole (PPy) as a representative of organic light-harvesting polymers is explored for energy generation, using nanodiamond as an inorganic electron acceptor. We present a technology for the composite layer-by-layer synthesis that is suitable for solar cell fabrication. The formation, pronounced material interaction, and photovoltaic properties of DND-PPy composites are characterized down to nanoscale by atomic force microscopy, infrared spectroscopy, Kelvin probe, and electronic transport measurements. The data show that DNDs with different surface terminations (hydrogenated, oxidized, poly-functional) assemble PPy oligomers in different ways. This leads to composites with different optoelectronic properties. Tight material interaction results in significantly enhanced photovoltage and broadband (1-3.5 eV) optical absorption in DND/PPy composites compared to pristine materials. Combination of both oxygen and hydrogen functional groups on the nanodiamond surface appears to be the most favorable for the optoelectronic effects. Theoretical DFT calculations corroborate the experimental data. Test solar cells demonstrate the functionality of the concept.

3.
Phys Chem Chem Phys ; 21(21): 11033-11042, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31089605

RESUMO

The low-cost efficient generation of renewable energy and its blending with societal lifestyle is becoming increasingly pervasive. Diamond-based inorganic-organic hybrid systems may have an immense, yet still mostly unexplored, potential in photovoltaic solar cells applications. In this work, we study the interactions of polypyrrole (PPy) with diamond nanoparticles (so-called nanodiamonds, NDs) by computational density functional theory (DFT) methods. We compute the structural and electronic properties of such hybrid organic-inorganic systems. During modeling, PPy is chemisorbed and physisorbed on (111) and (100) ND edge-like surface slabs terminated with oxygen, hydroxyl, carboxyl, and anhydride functional groups, i.e., in the arrangements most commonly found in real NDs. Moreover, NDs terminated with an amorphous surface layer (a-C:H, a-C:O) are considered to approach realistic conditions even further. In a predominant number of cases, we obtain the spatial separation of HOMO and LUMO at the interface, facilitating exciton dissociation. Further, there is a favorable energy level alignment for charge transport. The theoretical results, therefore, show the promising potential of PPy-ND composites in photovoltaic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...