Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurology ; 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523589

RESUMO

BACKGROUND AND OBJECTIVES: Reliable seizure forecasting has important implications in epilepsy treatment and improving the quality of lives for people with epilepsy. High-frequency activity (HFA) is one biomarker that has received significant attention over the past two decades, but its predictive value in seizure forecasting remains uncertain. This work aimed to determine the utility of HFA in seizure forecasting. METHODS: We used seizure data and HFA (80-170 Hz) data obtained from long-term, continuous intracranial EEG recordings of drug-resistant epilepsy patients. Instantaneous rates and phases of HFA cycles were used as features for seizure forecasting. Seizure forecasts based on each individual HFA feature, and using a combined approach, were generated pseudo-prospectively (causally). To compute the instantaneous phases for pseudo-prospective forecasting, real-time phase estimation based on an autoregressive model was employed. Features were combined using a weighted average approach. The performance of seizure forecasting was primarily evaluated by the area under the curve (AUC). RESULTS: Of 15 studied patients (median recording duration: 557 days, median seizures: 151), 12 patients with more than 10 seizures after 100 recording days were included in the pseudo-prospective analysis. The presented real-time phase estimation is feasible and can causally estimate the instantaneous phases of HFA cycles with high accuracy. Pseudo-prospective seizure forecasting based on HFA rates and phases performed significantly better than chance in 11 out of 12 patients, although there were patient-specific differences. Combining rate and phase information improved forecasting performance compared to using either feature alone. The combined forecast using the best-performing channel yielded a median AUC of 0.70, a median sensitivity of 0.57, and a median specificity of 0.77. CONCLUSIONS: These findings show that HFA could be useful for seizure forecasting and represent proof of concept for utilizing prior information of patient-specific relationships between HFA and seizures in pseudo-prospective forecasting. Future seizure forecasting algorithms might benefit from the inclusion of HFA, and the real-time phase estimation approach can be extended to other biomarkers. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that high-frequency activity (80-170 Hz) in long-term continuous intracranial EEG can be useful to forecast seizures in patients with refractory epilepsy.

2.
Epilepsia ; 63(7): 1682-1692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395096

RESUMO

OBJECTIVE: Emerging evidence has shown that ambient air pollution affects brain health, but little is known about its effect on epileptic seizures. This work aimed to assess the association between daily exposure to ambient air pollution and the risk of epileptic seizures. METHODS: This study used epileptic seizure data from two independent data sources (NeuroVista and Seer App seizure diary). In the NeuroVista data set, 3273 seizures were recorded using intracranial electroencephalography (iEEG) from 15 participants with refractory focal epilepsy in Australia in 2010-2012. In the seizure diary data set, 3419 self-reported seizures were collected through a mobile application from 34 participants with epilepsy in Australia in 2018-2021. Daily average concentrations of carbon monoxide (CO), nitrogen dioxide (NO2 ), ozone (O3 ), particulate matter ≤10 µm in diameter (PM10 ), and sulfur dioxide (SO2 ) were retrieved from the Environment Protection Authority (EPA) based on participants' postcodes. A patient-time-stratified case-crossover design with the conditional Poisson regression model was used to determine the associations between air pollutants and epileptic seizures. RESULTS: A significant association between CO concentrations and epileptic seizure risks was observed, with an increased seizure risk of 4% (relative risk [RR]: 1.04, 95% confidence interval [CI]: 1.01-1.07) for an interquartile range (IQR) increase of CO concentrations (0.13 parts per million), whereas no significant associations were found for the other four air pollutants in the whole study population. Female participants had a significantly increased risk of seizures when exposed to elevated CO and NO2 , with RRs of 1.05 (95% CI: 1.01-1.08) and 1.09 (95% CI: 1.01-1.16), respectively. In addition, a significant association was observed between CO and the risk of subclinical seizures (RR: 1.20, 95% CI: 1.12-1.28). SIGNIFICANCE: Daily exposure to elevated CO concentrations may be associated with an increased risk of epileptic seizures, especially for subclinical seizures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Epilepsias Parciais , Epilepsia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Austrália/epidemiologia , Epilepsia/induzido quimicamente , Feminino , Humanos , Dióxido de Nitrogênio/análise , Convulsões/induzido quimicamente , Convulsões/etiologia
3.
EBioMedicine ; 72: 103619, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34649079

RESUMO

BACKGROUND: Circadian and multiday rhythms are found across many biological systems, including cardiology, endocrinology, neurology, and immunology. In people with epilepsy, epileptic brain activity and seizure occurrence have been found to follow circadian, weekly, and monthly rhythms. Understanding the relationship between these cycles of brain excitability and other physiological systems can provide new insight into the causes of multiday cycles. The brain-heart link has previously been considered in epilepsy research, with potential implications for seizure forecasting, therapy, and mortality (i.e., sudden unexpected death in epilepsy). METHODS: We report the results from a non-interventional, observational cohort study, Tracking Seizure Cycles. This study sought to examine multiday cycles of heart rate and seizures in adults with diagnosed uncontrolled epilepsy (N=31) and healthy adult controls (N=15) using wearable smartwatches and mobile seizure diaries over at least four months (M=12.0, SD=5.9; control M=10.6, SD=6.4). Cycles in heart rate were detected using a continuous wavelet transform. Relationships between heart rate cycles and seizure occurrence were measured from the distributions of seizure likelihood with respect to underlying cycle phase. FINDINGS: Heart rate cycles were found in all 46 participants (people with epilepsy and healthy controls), with circadian (N=46), about-weekly (N=25) and about-monthly (N=13) rhythms being the most prevalent. Of the participants with epilepsy, 19 people had at least 20 reported seizures, and 10 of these had seizures significantly phase locked to their multiday heart rate cycles. INTERPRETATION: Heart rate cycles showed similarities to multiday epileptic rhythms and may be comodulated with seizure likelihood. The relationship between heart rate and seizures is relevant for epilepsy therapy, including seizure forecasting, and may also have implications for cardiovascular disease. More broadly, understanding the link between multiday cycles in the heart and brain can shed new light on endogenous physiological rhythms in humans. FUNDING: This research received funding from the Australian Government National Health and Medical Research Council (investigator grant 1178220), the Australian Government BioMedTech Horizons program, and the Epilepsy Foundation of America's 'My Seizure Gauge' grant.


Assuntos
Frequência Cardíaca/fisiologia , Convulsões/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiopatologia , Relógios Circadianos/fisiologia , Estudos de Coortes , Morte Súbita/etiologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Front Neurol ; 12: 713794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497578

RESUMO

Accurate identification of seizure activity, both clinical and subclinical, has important implications in the management of epilepsy. Accurate recognition of seizure activity is essential for diagnostic, management and forecasting purposes, but patient-reported seizures have been shown to be unreliable. Earlier work has revealed accurate capture of electrographic seizures and forecasting is possible with an implantable intracranial device, but less invasive electroencephalography (EEG) recording systems would be optimal. Here, we present preliminary results of seizure detection and forecasting with a minimally invasive sub-scalp device that continuously records EEG. Five participants with refractory epilepsy who experience at least two clinically identifiable seizures monthly have been implanted with sub-scalp devices (Minder®), providing two channels of data from both hemispheres of the brain. Data is continuously captured via a behind-the-ear system, which also powers the device, and transferred wirelessly to a mobile phone, from where it is accessible remotely via cloud storage. EEG recordings from the sub-scalp device were compared to data recorded from a conventional system during a 1-week ambulatory video-EEG monitoring session. Suspect epileptiform activity (EA) was detected using machine learning algorithms and reviewed by trained neurophysiologists. Seizure forecasting was demonstrated retrospectively by utilizing cycles in EA and previous seizure times. The procedures and devices were well-tolerated and no significant complications have been reported. Seizures were accurately identified on the sub-scalp system, as visually confirmed by periods of concurrent conventional scalp EEG recordings. The data acquired also allowed seizure forecasting to be successfully undertaken. The area under the receiver operating characteristic curve (AUC score) achieved (0.88), which is comparable to the best score in recent, state-of-the-art forecasting work using intracranial EEG.

7.
EClinicalMedicine ; 37: 100934, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386736

RESUMO

BACKGROUND: While the effects of prolonged sleep deprivation (≥24 h) on seizure occurrence has been thoroughly explored, little is known about the effects of day-to-day variations in the duration and quality of sleep on seizure probability. A better understanding of the interaction between sleep and seizures may help to improve seizure management. METHODS: To explore how sleep and epileptic seizures are associated, we analysed continuous intracranial electroencephalography (EEG) recordings collected from 10 patients with refractory focal epilepsy undergoing ordinary life activities between 2010 and 2012 from three clinical centres (Austin Health, The Royal Melbourne Hospital, and St Vincent's Hospital of the Melbourne University Epilepsy Group). A total of 4340 days of sleep-wake data were analysed (average 434 days per patient). EEG data were sleep scored using a semi-automated machine learning approach into wake, stages one, two, and three non-rapid eye movement sleep, and rapid eye movement sleep categories. FINDINGS: Seizure probability changes with day-to-day variations in sleep duration. Logistic regression models revealed that an increase in sleep duration, by 1·66 ± 0·52 h, lowered the odds of seizure by 27% in the following 48 h. Following a seizure, patients slept for longer durations and if a seizure occurred during sleep, then sleep quality was also reduced with increased time spent aroused from sleep and reduced rapid eye movement sleep. INTERPRETATION: Our results suggest that day-to-day deviations from regular sleep duration correlates with changes in seizure probability. Sleeping longer, by 1·66 ± 0·52 h, may offer protective effects for patients with refractory focal epilepsy, reducing seizure risk. Furthermore, the occurrence of a seizure may disrupt sleep patterns by elongating sleep and, if the seizure occurs during sleep, reducing its quality.

8.
Neurobiol Dis ; 154: 105347, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33771663

RESUMO

The seemingly random and unpredictable nature of seizures is a major debilitating factor for people with epilepsy. An increasing body of evidence demonstrates that the epileptic brain exhibits long-term fluctuations in seizure susceptibility, and seizure emergence seems to be a consequence of processes operating over multiple temporal scales. A deeper insight into the mechanisms responsible for long-term seizure fluctuations may provide important information for understanding the complex nature of seizure genesis. In this study, we explored the long-term dynamics of seizures in the tetanus toxin model of temporal lobe epilepsy. The results demonstrate the existence of long-term fluctuations in seizure probability, where seizures form clusters in time and are then followed by seizure-free periods. Within each cluster, seizure distribution is non-Poissonian, as demonstrated by the progressively increasing inter-seizure interval (ISI), which marks the approaching cluster termination. The lengthening of ISIs is paralleled by: increasing behavioral seizure severity, the occurrence of convulsive seizures, recruitment of extra-hippocampal structures and the spread of electrographic epileptiform activity outside of the limbic system. The results suggest that repeated non-convulsive seizures obey the 'seizures-beget-seizures' principle, leading to the occurrence of convulsive seizures, which decrease the probability of a subsequent seizure and, thus, increase the following ISI. The cumulative effect of repeated convulsive seizures leads to cluster termination, followed by a long inter-cluster period. We propose that seizures themselves are an endogenous factor that contributes to long-term fluctuations in seizure susceptibility and their mutual interaction determines the future evolution of disease activity.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Convulsões/fisiopatologia , Animais , Eletroencefalografia/métodos , Eletroencefalografia/tendências , Epilepsia do Lobo Temporal/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Convulsões/induzido quimicamente , Toxina Tetânica/toxicidade , Fatores de Tempo
9.
Neurology ; 96(9): 439-448, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408149

RESUMO

For the past 2 decades, high-frequency oscillations (HFOs) have been enthusiastically studied by the epilepsy community. Emerging evidence shows that HFOs harbor great promise to delineate epileptogenic brain areas and possibly predict the likelihood of seizures. Investigations into HFOs in clinical epilepsy have advanced from small retrospective studies relying on visual identification and correlation analysis to larger prospective assessments using automatic detection and prediction strategies. Although most studies have yielded promising results, some have revealed significant obstacles to clinical application of HFOs, thus raising debate about the reliability and practicality of HFOs as clinical biomarkers. In this review, we give an overview of the current state of HFO research and pinpoint the conceptual and methodological issues that have hampered HFO translation. We highlight recent insights gained from long-term data, high-density recordings, and multicenter collaborations and discuss the open questions that need to be addressed in future research.


Assuntos
Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Biomarcadores , Ondas Encefálicas , Humanos , Convulsões/fisiopatologia
10.
Neurology ; 96(7): e1070-e1081, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33361261

RESUMO

OBJECTIVE: To determine the utility of high-frequency activity (HFA) and epileptiform spikes as biomarkers for epilepsy, we examined the variability in their rates and locations using long-term ambulatory intracranial EEG (iEEG) recordings. METHODS: This study used continuous iEEG recordings obtained over an average of 1.4 years from 15 patients with drug-resistant focal epilepsy. HFA was defined as 80- to 170-Hz events with amplitudes clearly larger than the background, which was automatically detected with a custom algorithm. The automatically detected HFA was compared with visually annotated high-frequency oscillations (HFOs). The variations of HFA rates were compared with spikes and seizures on patient-specific and electrode-specific bases. RESULTS: HFA included manually annotated HFOs and high-amplitude events occurring in the 80- to 170-Hz range without observable oscillatory behavior. HFA and spike rates had high amounts of intrapatient and interpatient variability. Rates of HFA and spikes had large variability after electrode implantation in most of the patients. Locations of HFA and spikes varied up to weeks in more than one-third of the patients. Both HFA and spike rates showed strong circadian rhythms in all patients, and some also showed multiday cycles. Furthermore, the circadian patterns of HFA and spike rates had patient-specific correlations with seizures, which tended to vary across electrodes. CONCLUSION: Analysis of HFA and epileptiform spikes should consider postimplantation variability. HFA and epileptiform spikes, like seizures, show circadian rhythms. However, the circadian profiles can vary spatially within patients, and their correlations to seizures are patient-specific.


Assuntos
Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia , Convulsões/fisiopatologia , Adulto , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Nat Commun ; 11(1): 2172, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358560

RESUMO

The human brain has the capacity to rapidly change state, and in epilepsy these state changes can be catastrophic, resulting in loss of consciousness, injury and even death. Theoretical interpretations considering the brain as a dynamical system suggest that prior to a seizure, recorded brain signals may exhibit critical slowing down, a warning signal preceding many critical transitions in dynamical systems. Using long-term intracranial electroencephalography (iEEG) recordings from fourteen patients with focal epilepsy, we monitored key signatures of critical slowing down prior to seizures. The metrics used to detect critical slowing down fluctuated over temporally long scales (hours to days), longer than would be detectable in standard clinical evaluation settings. Seizure risk was associated with a combination of these signals together with epileptiform discharges. These results provide strong validation of theoretical models and demonstrate that critical slowing down is a reliable indicator that could be used in seizure forecasting algorithms.


Assuntos
Encéfalo/fisiopatologia , Epilepsias Parciais/diagnóstico , Convulsões/diagnóstico , Algoritmos , Biomarcadores , Eletrocorticografia , Humanos , Modelos Neurológicos , Fatores de Risco
12.
Biomaterials ; 230: 119648, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791841

RESUMO

Implantable medical devices are now in regular use to treat or ameliorate medical conditions, including movement disorders, chronic pain, cardiac arrhythmias, and hearing or vision loss. Aside from offering alternatives to pharmaceuticals, one major advantage of device therapy is the potential to monitor treatment efficacy, disease progression, and perhaps begin to uncover elusive mechanisms of diseases pathology. In an ideal system, neural stimulation, neural recording, and electrochemical sensing would be conducted by the same electrode in the same anatomical region. Carbon fiber (CF) microelectrodes are the appropriate size to achieve this goal and have shown excellent performance, in vivo. Their electrochemical properties, however, are not suitable for neural stimulation and electrochemical sensing. Here, we present a method to deposit high surface area conducting diamond on CF microelectrodes. This unique hybrid microelectrode is capable of recording single-neuron action potentials, delivering effective electrical stimulation pulses, and exhibits excellent electrochemical dopamine detection. Such electrodes are needed for the next generation of miniaturized, closed-loop implants that can self-tune therapies by monitoring both electrophysiological and biochemical biomarkers.


Assuntos
Diamante , Potenciais de Ação , Fibra de Carbono , Estimulação Elétrica , Microeletrodos
13.
Curr Treat Options Neurol ; 21(10): 47, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31559493

RESUMO

PURPOSE OF REVIEW: Two large-scale controlled clinical trials have provided Class I evidence for the benefit of deep brain stimulation (DBS) as a therapy for refractory epilepsy. However, the efficacy has been variable, with some patients not achieving any improvement in their seizure control. This disparity could be the result of suboptimal stimulation parameters/electrodes or alternatively a difference in the type of seizures being treated. This review presents the most recent clinical results with a focus on two major targets for DBS, the anterior nucleus of the thalamus (ANT) and the hippocampus. We detail the etiologies where DBS might work best, and provide evidence for the use of recorded neural responses for the optimization of stimulation parameters and closed-loop control of devices. RECENT FINDINGS: Stimulation of the hippocampus may work well for both focal and generalized seizures, whereas ANT stimulation may be best for focal seizures only. Studies have demonstrated that changes in stimulation-evoked response shape can be used as a biomarker for stimulation efficacy. Furthermore, new biomarkers have been identified that could be used for closed-loop stimulation. Improvements in patient screening and stimulation optimization are needed for patients to achieve optimal seizure control. Furthermore, therapy should be adjusted to suit individual patient needs. Recording evoked responses during the application of DBS could be used to measure the effectiveness of DBS and titrate stimulation as needed.

14.
Nat Neurosci ; 21(12): 1742-1752, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30482946

RESUMO

The mechanism of seizure emergence and the role of brief interictal epileptiform discharges (IEDs) in seizure generation are two of the most important unresolved issues in modern epilepsy research. We found that the transition to seizure is not a sudden phenomenon, but is instead a slow process that is characterized by the progressive loss of neuronal network resilience. From a dynamical perspective, the slow transition is governed by the principles of critical slowing, a robust natural phenomenon that is observable in systems characterized by transitions between dynamical regimes. In epilepsy, this process is modulated by synchronous synaptic input from IEDs. IEDs are external perturbations that produce phasic changes in the slow transition process and exert opposing effects on the dynamics of a seizure-generating network, causing either anti-seizure or pro-seizure effects. We found that the multifaceted nature of IEDs is defined by the dynamical state of the network at the moment of the discharge occurrence.


Assuntos
Hipocampo/fisiopatologia , Rede Nervosa/fisiopatologia , Convulsões/fisiopatologia , Animais , Região CA1 Hipocampal/fisiopatologia , Eletroencefalografia , Humanos , Masculino , Ratos Sprague-Dawley , Ratos Wistar , Sinapses/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-29988378

RESUMO

Neural prostheses that can monitor the physiological state of a subject are becoming clinically viable through improvements in the capacity to record from neural tissue. However, a significant limitation of current devices is that it is difficult to fabricate electrode arrays that have both high channel counts and the appropriate electrical properties required for neural recordings. In earlier work, we demonstrated nitrogen doped ultrananocrystalline diamond (N-UNCD) can provide efficacious electrical stimulation of neural tissue, with high charge injection capacity, surface stability and biocompatibility. In this work, we expand on this functionality to show that N-UNCD electrodes can also record from neural tissue owing to its low electrochemical impedance. We show that N-UNCD electrodes are highly flexible in their application, with successful recordings of action potentials from single neurons in an in vitro retina preparation, as well as local field potential responses from in vivo visual cortex tissue. Key properties of N-UNCD films, combined with scalability of electrode array fabrication with custom sizes for recording or stimulation along with integration through vertical interconnects to silicon based integrated circuits, may in future form the basis for the fabrication of versatile closed-loop neural prostheses that can both record and stimulate.

16.
J Neural Eng ; 15(5): 055001, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29889051

RESUMO

Responses of retinal ganglion cells to direct electrical stimulation have been shown experimentally to be well described by linear-nonlinear models. These models rely on the simplifying assumption that retinal ganglion cell responses to stimulation with an array of electrodes are driven by a simple linear weighted sum of stimulus current amplitudes from each electrode, known as the 'electrical receptive field'. OBJECTIVE: This paper aims to demonstrate the biophysical basis of the linear-nonlinear model and the electrical receptive field to facilitate the development of improved stimulation strategies for retinal implants. APPROACH: We compare the linear-nonlinear model of subretinal electrical stimulation with a multi-layered, biophysical, volume conductor model of retinal stimulation. MAIN RESULTS: Our results show that the linear electrical receptive field of the linear-nonlinear model matches the transmembrane currents induced by electrodes (the activating function) at the site of the high-density sodium channel band with only minor discrepancies. The discrepancies are mostly eliminated by including axial current flow originating from adjacent cell compartments. Furthermore, for cells where a single linear electrical receptive field is insufficient, we show that cell responses are likely driven by multiple sites of action potential initiation with multiple distinct receptive fields, each of which can be accurately described by the activating function. SIGNIFICANCE: This result establishes that the biophysical basis of the electrical receptive field of the linear-nonlinear model is the superposition of transmembrane currents induced by different electrodes at and near the site of action potential initiation. Together with existing experimental support for linear-nonlinear models of electrical stimulation, this provides a firm basis for using this much simplified model to generate more optimal stimulation patterns for retinal implants.


Assuntos
Biofísica , Células Ganglionares da Retina/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Estimulação Elétrica , Eletrodos , Desenho de Equipamento , Humanos , Modelos Lineares , Dinâmica não Linear , Próteses e Implantes , Células Ganglionares da Retina/ultraestrutura , Canais de Sódio
17.
PLoS Comput Biol ; 14(2): e1005997, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29432411

RESUMO

Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell's spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear.


Assuntos
Simulação por Computador , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Ganglionares da Retina/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Estimulação Elétrica , Eletrodos , Luz , Modelos Neurológicos , Ratos , Reprodutibilidade dos Testes , Retina/fisiologia , Razão Sinal-Ruído , Software , Sinapses/fisiologia , Visão Ocular , Córtex Visual/fisiologia
18.
PLoS Comput Biol ; 12(4): e1004849, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27035143

RESUMO

Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy.


Assuntos
Modelos Neurológicos , Próteses Neurais , Retina/fisiologia , Potenciais de Ação , Animais , Biologia Computacional , Técnicas In Vitro , Modelos Lineares , Próteses Neurais/estatística & dados numéricos , Dinâmica não Linear , Análise de Componente Principal , Desenho de Prótese , Ratos , Ratos Long-Evans , Retina/citologia , Células Ganglionares da Retina/fisiologia
19.
Clin Exp Optom ; 98(5): 395-410, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26390902

RESUMO

Retinal disease and its associated retinal degeneration can lead to the loss of photoreceptors and therefore, profound blindness. While retinal degeneration destroys the photoreceptors, the neural circuits that convey information from the eye to the brain are sufficiently preserved to make it possible to restore sight using prosthetic devices. Typically, these devices consist of a digital camera and an implantable neurostimulator. The image sensor in a digital camera has the same spatiotopic arrangement as the photoreceptors of the retina. Therefore, it is possible to extract meaningful spatial information from an image and deliver it via an array of stimulating electrodes directly to the surviving retinal circuits. Here, we review the structure and function of normal and degenerate retina. The different approaches to prosthetic implant design are described in the context of human and preclinical trials. In the last section, we review studies of electrical properties of the retina and its response to electrical stimulation. These types of investigation are currently assessing a number of key challenges identified in human trials, including stimulation efficacy, spatial localisation, desensitisation to repetitive stimulation and selective activation of retinal cell populations.


Assuntos
Implantação de Prótese/métodos , Doenças Retinianas/cirurgia , Percepção Visual , Próteses Visuais , Animais , Humanos , Doenças Retinianas/fisiopatologia , Visão Ocular
20.
Artigo em Inglês | MEDLINE | ID: mdl-26738028

RESUMO

Little is known about how the retina's response to electrical stimulation is modified by temperatures. In vitro experiments are often used to inform in vivo studies, hence it is important to understand what changes occur at physiological temperature. To investigate this, we recorded from eight RGCs in vitro at three temperatures; room temperature (24°C), 30°C and 34°C. Results show that response latencies and thresholds are reduced, bursting spike rates in response to stimulation increases, and the spiking becomes more consistently locked to the stimulus at higher temperatures.


Assuntos
Temperatura Corporal/efeitos da radiação , Estimulação Elétrica , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Animais , Ratos , Ratos Long-Evans , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...