Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991586

RESUMO

In this paper, a report on the development of an Internet of Things (IoT)-based connected university system is presented. There have been multiple smart solutions developed at the university over recent years. However, the user base of these systems is limited. The IoT-based connected university system allows for integration of multiple subsystems without the need to implement all of them in the same environment, thus enabling end-users to access multiple solutions through a single common interface. The implementation is based on microservice architecture, with the focus mainly on system robustness, scalability, and universality. In the system design, four subsystems are currently implemented, i.e., the subsystem for indoor navigation, the subsystem for parking assistants, the subsystem for smart classrooms or offices, and the subsystem for news aggregation from university life. The principles of all implemented subsystems, as well as the implementation of the system as a web interface and a mobile application, are presented in the paper. Moreover, the implementation of the indoor navigation subsystem that uses signals from Bluetooth beacons is described in detail. The paper also presents results proving the concept of the Bluetooth-based indoor navigation, taking into account different placements of nodes. The tests were performed in a real-world environment to evaluate the feasibility of the navigation module that utilizes deterministic fingerprinting algorithms to estimate the positions of users' devices.

2.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36298263

RESUMO

This paper presents an improved IoT-based system designed to help teachers handle lessons in the classroom in line with COVID-19 restrictions. The system counts the number of people in the classroom as well as their distribution within the classroom. The proposed IoT system consists of three parts: a Gate node, IoT nodes, and server. The Gate node, installed at the door, can provide information about the number of persons entering or leaving the room using door crossing detection. The Arduino-based module NodeMCU was used as an IoT node and sets of ultrasonic distance sensors were used to obtain information about seat occupancy. The system server runs locally on a Raspberry Pi and the teacher can connect to it using a web application from the computer in the classroom or a smartphone. The teacher is able to set up and change the settings of the system through its GUI. A simple algorithm was designed to check the distance between occupied seats and evaluate the accordance with imposed restrictions. This system can provide high privacy, unlike camera-based systems.


Assuntos
COVID-19 , Humanos , Privacidade , Smartphone , Software , Algoritmos
3.
Sensors (Basel) ; 21(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396203

RESUMO

Bedsores are one of the severe problems which could affect a long-term lying subject in the hospitals or the hospice. To prevent lying bedsores, we present a smart Internet of Things (IoT) system for detecting the position of a lying person using novel textile pressure sensors. To build such a system, it is necessary to use different technologies and techniques. We used sixty-four of our novel textile pressure sensors based on electrically conductive yarn and the Velostat to collect the information about the pressure distribution of the lying person. Using Message Queuing Telemetry Transport (MQTT) protocol and Arduino-based hardware, we send measured data to the server. On the server side, there is a Node-RED application responsible for data collection, evaluation, and provisioning. We are using a neural network to classify the subject lying posture on the separate device because of the computation complexity. We created the challenging dataset from the observation of twenty-one people in four lying positions. We achieved a best classification precision of 92% for fourth class (right side posture type). On the other hand, the best recall (91%) for first class (supine posture type) was obtained. The best F1 score (84%) was achieved for first class (supine posture type). After the classification, we send the information to the staff desktop application. The application reminds employees when it is necessary to change the lying position of individual subjects and thus prevent bedsores.


Assuntos
Decúbito Ventral , Têxteis , Humanos , Internet das Coisas , Redes Neurais de Computação , Postura , Telemetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...