Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 78(24): 8200-6, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17165808

RESUMO

This article introduces the concept of chiral ion mobility spectrometry (CIMS) and presents examples demonstrating the gas-phase separation of enantiomers of a wide range of racemates including pharmaceuticals, amino acids, and carbohydrates. CIMS is similar to traditional ion mobility spectrometry, where gas-phase ions, when subjected to a potential gradient, are separated at atmospheric pressure due to differences in their shapes and sizes. In addition to size and shape, CIMS separates ions based on their stereospecific interaction with a chiral gas. In order to achieve chiral discrimination by CIMS, an asymmetric environment was provided by doping the drift gas with a volatile chiral reagent. In this study (S)-(+)-2-butanol was used as a chiral modifier to demonstrate enantiomeric separations of atenolol, serine, methionine, threonine, methyl alpha-glucopyranoside, glucose, penicillamine, valinol, phenylalanine, and tryptophan from their respective racemic mixtures.


Assuntos
Aminoácidos/isolamento & purificação , Butanóis/química , Carboidratos/isolamento & purificação , Gases , Espectrometria de Massas/métodos , Preparações Farmacêuticas/isolamento & purificação , Aminoácidos/química , Pressão Atmosférica , Carboidratos/química , Preparações Farmacêuticas/química , Estereoisomerismo , Fatores de Tempo
2.
Analyst ; 129(2): 139-44, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14752557

RESUMO

This paper reports the first example of electrospray ionization (ESI) for the separation and detection of anions in aqueous solutions by ion mobility spectrometry (IMS). Standard solutions of arsenate, phosphate, sulfate, nitrate, nitrite, chloride, formate, and acetate were analyzed using ESI-IMS and distinct peak patterns and reduced mobility constants (K(0)) were observed for respective anions. Real world water samples were analyzed for nitrate and nitrite to determine the feasibility of using ESI-IMS as a rapid analytical method for monitoring nitrate and nitrite in water systems. The data showed satisfactory correlation between the measured value ([similar]0.16 ppm) and the reported maximum nitrate-nitrogen concentration (0.2 ppm) found in a local drinking water system. For on-site measurement applications, direct sample introduction and air as an alternate drift gas to nitrogen were evaluated. The identities of the nitrite and nitrate mobility peaks were verified by comparison of reduced mobility constants with mass identified nitrate and nitrite ions reported in literature. In the mixing ratio, a linear dynamic range of 3 orders of magnitude and instrument detection limits of 10 ppb for nitrate and 40 ppb for nitrite were obtained. The calibration curves showed r(2) value of 0.98 and slope of 0.06 for nitrate and r(2) value of 0.99 and slope of 0.11 for nitrite.


Assuntos
Nitratos/análise , Nitritos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Abastecimento de Água/análise
3.
Anal Chem ; 74(17): 4343-52, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12236341

RESUMO

The use of electrospray ionization ambient pressure ion mobility spectrometry with an orthogonal reflector time-of-flight mass spectrometer to analyze chemical warfare (CW) degradation products from aqueous environmental samples has been demonstrated. Certified reference materials of analytical standards for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the chemical warfare convention treaty verification were used in this study. A combination of six G/V-type nerve and four S-type vesicant related CW agent degradation products were separated with baseline resolution by this instrumental technique. Analytical figures of merit for each CW degradation product were determined. In some cases, reduced mobility constants (K0) have been reported for the first time. linear response ranges for the selected CW degradation products were found to be generally approximately 2 orders of magnitude, where the overall dynamic response ranges were found to extend to 4 orders of magnitude. Limits of detection for five of the nine chemical products tested were found to be less than 1 ppm. To demonstrate the potential of this instrumental method with complex mixtures, four CW degradation products were separated and detected from a spiked Palouse River water sample in less than 1 min. Finally, a homologous series of n-alkylamines were used as baseline reference standards, producing a mobility/mass trend line to which the CW degradation products could be compared. Comparison of these products in this manner is expected to reduce the number of false positive/negative responses.


Assuntos
Substâncias para a Guerra Química/análise , Biodegradação Ambiental , Substâncias para a Guerra Química/metabolismo , Substâncias para a Guerra Química/normas , Estudos de Viabilidade , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Poluentes da Água/análise , Poluentes da Água/metabolismo
4.
J Am Soc Mass Spectrom ; 13(4): 300-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11951967

RESUMO

Recent studies in electrospray ionization (ESI)/ion mobility spectrometry (IMS) have focussed on employing different drift gases to alter separation efficiency for some molecules. This study investigates four structurally similar classes of molecules (cocaine and metabolites, amphetamines, benzodiazepines, and small peptides) to determine the effect of structure on relative mobility changes in four drift gases (helium, nitrogen, argon, carbon dioxide). Collision cross sections were plotted against drift gas polarizability and a linear relationship was found for the nineteen compounds evaluated in the study. Based on the reduced mobility database, all nineteen compounds could be separated in one of the four drift gases, however, the drift gas that provided optimal separation was specific for the two compounds.


Assuntos
Gases/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Algoritmos , Anfetaminas/química , Cocaína/química , Indicadores e Reagentes , Peso Molecular , Peptídeos/química , Análise de Regressão
5.
J Chromatogr A ; 946(1-2): 59-68, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11873983

RESUMO

Due to the proteomics revolution, multi-dimensional separation and detection instruments are required to evaluate many peptides and proteins in single samples. In this study, electrospray ionization (ESI) ion mobility spectrometry (IMS) was evaluated as an additional separation after HPLC separations. Common HPLC mobile phase compositions (solvents, acid modifiers, and buffers) were assessed for the effect on ESI-IMS response. Up to 5 mM sodium phosphate, a non-volatile buffer, was able to be electrosprayed into the IMS without degradation of the instrumental performance. Due to the rapid separation times of IMS, multiple IMS spectra were obtained within a single HPLC peak. A five-peptide mixture was separated in a capillary HPLC column under isocratic conditions within 3 min. Coelution of two peaks due to non-optimal HPLC conditions occurred and these two peaks could not be distinguished by HPLC with UV detection. In contrast, the single ion mobility chromatograms provided separation of each peptide as well as providing a second degree of analyte identification (HPLC retention time and IMS mobility). Furthermore, IMS-MS analysis of the five peptides and comparison with HPLC retention times showed that each peptide had a unique retention time-ion mobility-mass to charge value. This work showed that IMS could be employed for direct separation and detection of HPLC eluents and also could be combined with HPLC-MS for three unique dimensions of separation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Ultravioleta
6.
Rapid Commun Mass Spectrom ; 16(7): 670-5, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11921245

RESUMO

The coupling of ion mobility spectrometry (IMS) instruments with mass spectrometers has been described since early in IMS development, most commonly with quadrupole mass analyzers. The recent development of IMS with time-of-flight (TOF) instruments has demonstrated that the time compatibility (IMS milliseconds and TOFMS microseconds) of the two techniques enables rapid two-dimensional separations to be performed, theoretically in the order of seconds for a complete analysis. This study presents a unique way to operate a traditional IMS/QMS system to attain separations similar to those achieved with IMS/TOF. For this new approach, the quadrupole was slowly scanned in the single-ion monitoring mode while IMS spectra were continually embedded in each m/z step. In this way, two-dimensional separations (IMS drift times and m/z) were obtained using the traditional IMS/QMS arrangement. An example of a five amino acid separation (quadrupole scan of 40 m/z values at a rate of approximately 7 steps/min) led to a complete two-dimensional analysis within 6 min, comparable to rapid chromatographic separations with mass spectrometry. Proposed approaches to reduce the analysis time are discussed and a reduction in the analysis time to less than 1 min is feasible when the IMS/QMS separation conditions are optimized.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Algoritmos , Aminoácidos/isolamento & purificação , Grupo dos Citocromos c/isolamento & purificação , Indicadores e Reagentes
7.
Anal Chem ; 74(2): 420-7, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11811417

RESUMO

The rapid increase in amphetamine abuse for recreational purposes has created a need for fast analysis and detection methodologies. For the first time, we show the separation of six amphetamines by ESI-IMS/MS. A complete analysis can be performed in 70 s, which is faster than traditional chromatographic techniques. In addition, ESI-IMS/MS was found to provide low detection limits for the six compounds (15.4 ppb for ethylamphetamine). Charge competition between amphetamines was found to occur at high amphetamine concentrations. The degree of preferential ionization was dependent on the functional group placed on the amine. Both one-analyte and two-analyte calibration curves were evaluated on the basis of the ion evaporation model. Evaporation rates were determined for the six amphetamines, and the rates were correlated with the degree of selective ionization. Evaluation of three typical ESI solvent compositions showed that the addition of a modifier (acetic acid and formic acid) enhanced the degree of preferential ionization for some amphetamines and increased the effect of charge competition. The solvent studies show the complexity of ESI and provide possible strategies for altering the amount of charge competition between analytes. Overall, ESI-IMS/MS appears to be a promising technique because of its sensitivity and rapid separation times for the amphetamines in aqueous samples; however, further research employing biological samples is required before it can be recommended as a mainstream technique.


Assuntos
Anfetaminas/análise , Calibragem , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/normas
8.
Talanta ; 57(1): 123-34, 2002 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18968612

RESUMO

A novel analysis of explosives via the coupling of an airline passenger personnel portal with a high-flow (HF), high-resolution (HR) ion mobility spectrometry (IMS) was shown for the first time. The HF-HR-IMS utilized a novel ion aperture grid design with a (63)Ni ionization source while operating at ambient pressure in the positive ion mode at 200 degrees C. The HF-HR-IMS response characteristics of 2,4,6-trinitrotoluene (TNT), 4,6-dinitro-o-cresol (4,6DNOC), and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) were investigated. Modifications made to the HF-HR-IMS exhaust and ionization source created an 800% increase in the total ion current (TIC), from 0.85 to 6.8 nA. This translated into a 65% ion response increase for TNT when compared with a traditional IMS. A mixture of TNT and (4,6DNOC) was used to successfully demonstrate the resolving power of the species with similar reduced mobility constants (K(o)), 1.54 and 1.59, respectively. The reactant ion (H(2)O)(n)H(+), peak was also used to measure the resolving power of the spectrometer while varying the internal diameter of three different aperture openings from 1.00 to 3.54cm. This provided a resolving power range of 50-60, double that typically achievable by commercial IMS instruments. Most important, these changes made in this new instrumental design can be implemented to all existing and future IMS's to greatly enhance the achievable IMS resolving power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...