Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 117(1): 14-24, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235179

RESUMO

The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies, but there are a few systematic experimental investigations. Here, we present a combined study that systematically characterizes RBC behavior for a wide range of flow rates and channel sizes. Even though simulations and experiments generally show good agreement, experimental observations demonstrate that there is no single well-defined RBC state for fixed flow conditions but rather a broad distribution of states. This result can be attributed to the inherent variability in RBC mechanical properties, which is confirmed by a model that takes the variation in RBC shear elasticity into account. This represents a significant step toward a quantitative connection between RBC behavior in microfluidic devices and their mechanical properties, which is essential for a high-throughput characterization of diseased cells.


Assuntos
Forma Celular , Eritrócitos/citologia , Microfluídica/métodos , Membrana Celular/química , Elasticidade , Eritrócitos/química , Ensaios de Triagem em Larga Escala/métodos , Humanos
2.
Phys Rev Lett ; 121(11): 118103, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265089

RESUMO

A recent study of red blood cells (RBCs) in shear flow [Lanotte et al., Proc. Natl. Acad. Sci. U.S.A. 113, 13289 (2016)PNASA60027-842410.1073/pnas.1608074113] has demonstrated that RBCs first tumble, then roll, transit to a rolling and tumbling stomatocyte, and finally attain polylobed shapes with increasing shear rate, when the viscosity contrast between cytosol and blood plasma is large enough. Using two different simulation techniques, we construct a state diagram of RBC shapes and dynamics in shear flow as a function of shear rate and viscosity contrast, which is also supported by microfluidic experiments. Furthermore, we illustrate the importance of RBC shear elasticity for its dynamics in flow and show that two different kinds of membrane buckling trigger the transition between subsequent RBC states.


Assuntos
Eritrócitos/fisiologia , Modelos Biológicos , Tamanho Celular , Simulação por Computador , Citosol/fisiologia , Elasticidade , Membrana Eritrocítica/fisiologia , Eritrócitos/citologia , Técnicas Analíticas Microfluídicas , Plasma/fisiologia , Resistência ao Cisalhamento
3.
PLoS One ; 12(5): e0176799, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472125

RESUMO

Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.


Assuntos
Eritrócitos/citologia , Difusão Dinâmica da Luz , Elasticidade , Deformação Eritrocítica , Humanos , Modelos Teóricos
4.
Proc Natl Acad Sci U S A ; 113(47): 13289-13294, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27834220

RESUMO

Blood viscosity decreases with shear stress, a property essential for an efficient perfusion of the vascular tree. Shear thinning is intimately related to the dynamics and mutual interactions of RBCs, the major component of blood. Because of the lack of knowledge about the behavior of RBCs under physiological conditions, the link between RBC dynamics and blood rheology remains unsettled. We performed experiments and simulations in microcirculatory flow conditions of viscosity, shear rates, and volume fractions, and our study reveals rich RBC dynamics that govern shear thinning. In contrast to the current paradigm, which assumes that RBCs align steadily around the flow direction while their membranes and cytoplasm circulate, we show that RBCs successively tumble, roll, deform into rolling stomatocytes, and, finally, adopt highly deformed polylobed shapes for increasing shear stresses, even for semidilute volume fractions of the microcirculation. Our results suggest that any pathological change in plasma composition, RBC cytosol viscosity, or membrane mechanical properties will affect the onset of these morphological transitions and should play a central role in pathological blood rheology and flow behavior.


Assuntos
Eritrócitos/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Reologia/métodos , Velocidade do Fluxo Sanguíneo/fisiologia , Elasticidade/fisiologia , Deformação Eritrocítica/fisiologia , Eritrócitos/citologia , Testes Hematológicos , Humanos , Microcirculação/fisiologia , Microscopia/métodos , Plasma , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...