Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 677, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180835

RESUMO

BACKGROUND: With the expansion of animal production, parasitic helminths are gaining increasing economic importance. However, application of several established deworming agents can harm treated hosts and environment due to their low specificity. Furthermore, the number of parasite strains showing resistance is growing, while hardly any new anthelminthics are being developed. Here, we present a bioinformatics workflow designed to reduce the time and cost in the development of new strategies against parasites. The workflow includes quantitative transcriptomics and proteomics, 3D structure modeling, binding site prediction, and virtual ligand screening. Its use is demonstrated for Acanthocephala (thorny-headed worms) which are an emerging pest in fish aquaculture. We included three acanthocephalans (Pomphorhynchus laevis, Neoechinorhynchus agilis, Neoechinorhynchus buttnerae) from four fish species (common barbel, European eel, thinlip mullet, tambaqui). RESULTS: The workflow led to eleven highly specific candidate targets in acanthocephalans. The candidate targets showed constant and elevated transcript abundances across definitive and accidental hosts, suggestive of constitutive expression and functional importance. Hence, the impairment of the corresponding proteins should enable specific and effective killing of acanthocephalans. Candidate targets were also highly abundant in the acanthocephalan body wall, through which these gutless parasites take up nutrients. Thus, the candidate targets are likely to be accessible to compounds that are orally administered to fish. Virtual ligand screening led to ten compounds, of which five appeared to be especially promising according to ADMET, GHS, and RO5 criteria: tadalafil, pranazepide, piketoprofen, heliomycin, and the nematicide derquantel. CONCLUSIONS: The combination of genomics, transcriptomics, and proteomics led to a broadly applicable procedure for the cost- and time-saving identification of candidate target proteins in parasites. The ligands predicted to bind can now be further evaluated for their suitability in the control of acanthocephalans. The workflow has been deposited at the Galaxy workflow server under the URL tinyurl.com/yx72rda7 .


Assuntos
Acantocéfalos , Doenças dos Peixes , Acantocéfalos/química , Acantocéfalos/genética , Acantocéfalos/metabolismo , Animais , Antiparasitários/farmacologia , Doenças dos Peixes/parasitologia , Peixes , Ligantes , Tadalafila/metabolismo , Fluxo de Trabalho
2.
Cell Biosci ; 12(1): 75, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642000

RESUMO

BACKGROUND: A central question in parasitology is why parasites mature and reproduce in some host species but not in others. Yet, a better understanding of the inability of parasites to complete their life cycles in less suitable hosts may hold clues for their control. To shed light on the molecular basis of parasite (non-)maturation, we analyzed transcriptomes of thorny-headed worms (Acanthocephala: Pomphorhynchus laevis), and compared developmentally arrested worms excised from European eel (Anguilla anguilla) to developmentally unrestricted worms from barbel (Barbus barbus). RESULTS: Based on 20 RNA-Seq datasets, we demonstrate that transcriptomic profiles are more similar between P. laevis males and females from eel than between their counterparts from barbel. Impairment of sexual phenotype development was reflected in gene ontology enrichment analyses of genes having differential transcript abundances. Genes having reproduction- and energy-related annotations were found to be affected by parasitizing either eel or barbel. According to this, the molecular machinery of male and female acanthocephalans from the eel is less tailored to reproduction and more to coping with the less suitable environment provided by this host. The pattern was reversed in their counterparts from the definitive host, barbel. CONCLUSIONS: Comparative analysis of transcriptomes of developmentally arrested and reproducing parasites elucidates the challenges parasites encounter in hosts which are unsuitable for maturation and reproduction. By studying a gonochoric species, we were also able to highlight sex-specific traits. In fact, transcriptomic evidence for energy shortage in female acanthocephalans associates with their larger body size. Thus, energy metabolism and glycolysis should be promising targets for the treatment of acanthocephaliasis. Although inherently enabling a higher resolution in heterosexuals, the comparison of parasites from definitive hosts and less suitable hosts, in which the parasites merely survive, should be applicable to hermaphroditic helminths. This may open new perspectives in the control of other helminth pathogens of humans and livestock.

3.
BMC Genomics ; 22(1): 604, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372786

RESUMO

BACKGROUND: Seisonidea (also Seisonacea or Seisonidae) is a group of small animals living on marine crustaceans (Nebalia spec.) with only four species described so far. Its monophyletic origin with mostly free-living wheel animals (Monogononta, Bdelloidea) and endoparasitic thorny-headed worms (Acanthocephala) is widely accepted. However, the phylogenetic relationships inside the Rotifera-Acanthocephala clade (Rotifera sensu lato or Syndermata) are subject to ongoing debate, with consequences for our understanding of how genomes and lifestyles might have evolved. To gain new insights, we analyzed first drafts of the genome and transcriptome of the key taxon Seisonidea. RESULTS: Analyses of gDNA-Seq and mRNA-Seq data uncovered two genetically distinct lineages in Seison nebaliae Grube, 1861 off the French Channel coast. Their mitochondrial haplotypes shared only 82% sequence identity despite identical gene order. In the nuclear genome, distinct linages were reflected in different gene compactness, GC content and codon usage. The haploid nuclear genome spans ca. 46 Mb, of which 96% were reconstructed. According to ~ 23,000 SuperTranscripts, gene number in S. nebaliae should be within the range published for other members of Rotifera-Acanthocephala. Consistent with this, numbers of metazoan core orthologues and ANTP-type transcriptional regulatory genes in the S. nebaliae genome assembly were between the corresponding numbers in the other assemblies analyzed. We additionally provide evidence that a basal branching of Seisonidea within Rotifera-Acanthocephala could reflect attraction to the outgroup. Accordingly, rooting via a reconstructed ancestral sequence led to monophyletic Pararotatoria (Seisonidea+Acanthocephala) within Hemirotifera (Bdelloidea+Pararotatoria). CONCLUSION: Matching genome/transcriptome metrics with the above phylogenetic hypothesis suggests that a haploid nuclear genome of about 50 Mb represents the plesiomorphic state for Rotifera-Acanthocephala. Smaller genome size in S. nebaliae probably results from subsequent reduction. In contrast, genome size should have increased independently in monogononts as well as bdelloid and acanthocephalan stem lines. The present data additionally indicate a decrease in gene repertoire from free-living to epizoic and endoparasitic lifestyles. Potentially, this reflects corresponding steps from the root of Rotifera-Acanthocephala via the last common ancestors of Hemirotifera and Pararotatoria to the one of Acanthocephala. Lastly, rooting via a reconstructed ancestral sequence may prove useful in phylogenetic analyses of other deep splits.


Assuntos
Acantocéfalos , Rotíferos , Acantocéfalos/genética , Animais , Genômica , Filogenia , Rotíferos/genética , Transcriptoma
4.
PLoS One ; 15(6): e0232973, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574180

RESUMO

Thorny-headed worms (Acanthocephala) are endoparasites exploiting Mandibulata (Arthropoda) and Gnathostomata (Vertebrata). Despite their world-wide occurrence and economic relevance as a pest, genome and transcriptome assemblies have not been published before. However, such data might hold clues for a sustainable control of acanthocephalans in animal production. For this reason, we present the first draft of an acanthocephalan nuclear genome, besides the mitochondrial one, using the fish parasite Pomphorhynchus laevis (Palaeacanthocephala) as a model. Additionally, we have assembled and annotated the transcriptome of this species and the proteins encoded. A hybrid assembly of long and short reads resulted in a near-complete P. laevis draft genome of ca. 260 Mb, comprising a large repetitive portion of ca. 63%. Numbers of transcripts and translated proteins (35,683) were within the range of other members of the Rotifera-Acanthocephala clade. Our data additionally demonstrate a significant reorganization of the acanthocephalan gene repertoire. Thus, more than 20% of the usually conserved metazoan genes were lacking in P. laevis. Ontology analysis of the retained genes revealed many connections to the incorporation of carotinoids. These are probably taken up via the surface together with lipids, thus accounting for the orange coloration of P. laevis. Furthermore, we found transcripts and protein sequences to be more derived in P. laevis than in rotifers from Monogononta and Bdelloidea. This was especially the case in genes involved in energy metabolism, which might reflect the acanthocephalan ability to use the scarce oxygen in the host intestine for respiration and simultaneously carry out fermentation. Increased plasticity of the gene repertoire through the integration of foreign DNA into the nuclear genome seems to be another underpinning factor of the evolutionary success of acanthocephalans. In any case, energy-related genes and their proteins may be considered as candidate targets for the acanthocephalan control.


Assuntos
Acantocéfalos/genética , Acantocéfalos/metabolismo , Genoma Helmíntico , Genoma Mitocondrial , Proteoma , Transcriptoma , Animais , Evolução Biológica , Biologia Computacional , Peixes/parasitologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...