Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(1993): 20222238, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36787794

RESUMO

The narrow-headed vole, collared lemming and common vole were the most abundant small mammal species across the Eurasian Late Pleistocene steppe-tundra environment. Previous ancient DNA studies of the collared lemming and common vole have revealed dynamic population histories shaped by climatic fluctuations. To investigate the extent to which species with similar adaptations share common evolutionary histories, we generated a dataset comprised the mitochondrial genomes of 139 ancient and 6 modern narrow-headed voles from several sites across Europe and northwestern Asia covering approximately the last 100 thousand years (kyr). We inferred Bayesian time-aware phylogenies using 11 radiocarbon-dated samples to calibrate the molecular clock. Divergence of the main mtDNA lineages across the three species occurred during marine isotope stages (MIS) 7 and MIS 5, suggesting a common response of species adapted to open habitat during interglacials. We identified several time-structured mtDNA lineages in European narrow-headed vole, suggesting lineage turnover. The timing of some of these turnovers was synchronous across the three species, allowing us to identify the main drivers of the Late Pleistocene dynamics of steppe- and cold-adapted species.


Assuntos
Arvicolinae , DNA Antigo , Animais , Arvicolinae/genética , Teorema de Bayes , Filogenia , Dinâmica Populacional , DNA Mitocondrial/genética , Variação Genética
2.
Sci Rep ; 11(1): 12877, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145353

RESUMO

Corrosion patterns induced by gastric fluids on the skeleton of prey animals may depend on the nature of the corrosive agents (acid, enzymes) as well as on the composition of the hard parts and the soft tissues that surround them. We propose a framework for predicting and interpreting corrosion patterns on lizard teeth, our model system, drawing on the different digestive pathways of avian and non-avian vertebrate predators. We propose that high-acid, low-enzyme systems (embodied by mammalian carnivores) will lead to corrosion of the tooth crowns, whereas low-acid, high-enzyme systems (embodied by owls) will lead to corrosion of the tooth shafts. We test our model experimentally using artificial gastric fluids (with HCl and pepsin) and feeding experiments, and phenomenologically using wild-collected owl pellets with lizard remains. Finding an association between the predictions and the experimental results, we then examine corrosion patterns on nearly 900 fossil lizard jaws. Given an appropriate phylogenetic background, our focus on physiological rather than taxonomic classes of predators allows the extension of the approach into Deep Time.


Assuntos
Cárie Dentária/patologia , Fósseis , Lagartos , Dente/patologia , Ração Animal , Animais , Digestão , Modelos Animais de Doenças , Furões , Paleontologia , Dente/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...