Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2312802121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437531

RESUMO

Magnetic fields in protoplanetary disks are thought to play a prominent role in the formation of planetary bodies. Acting upon turbulence and angular momentum transport, they may influence the motion of solids and accretion onto the central star. By searching for the record of the solar nebula field preserved in meteorites, we aim to characterize the strength of a disk field with a spatial and temporal resolution far superior to observations of extrasolar disks. Here, we present a rock magnetic and paleomagnetic study of the andesite meteorite Erg Chech 002 (EC002). This meteorite contains submicron iron grains, expected to be very reliable magnetic recorders, and carries a stable, high-coercivity magnetization. After ruling out potential sources of magnetic contamination, we show that EC002 most likely carries an ancient thermoremanent magnetization acquired upon cooling on its parent body. Using the U-corrected Pb-Pb age of the meteorite's pyroxene as a proxy for the timing of magnetization acquisition, we estimate that EC002 recorded a field of 60 ± 18 µT at a distance of ~2 to 3 astronomical units, 2.0 ± 0.3 My after the formation of calcium-aluminum-rich inclusions. This record can only be explained if EC002 was magnetized by the field prevalent in the solar nebula. This makes EC002's record, particularly well resolved in time and space, one of the two earliest records of the solar nebula field. Such a field intensity is consistent with stellar accretion rates observed in extrasolar protoplanetary disks.

2.
Space Sci Rev ; 219(3): 22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007705

RESUMO

The objective of the Psyche Magnetometry Investigation is to test the hypothesis that asteroid (16) Psyche formed from the core of a differentiated planetesimal. To address this, the Psyche Magnetometer will measure the magnetic field around the asteroid to search for evidence of remanent magnetization. Paleomagnetic measurements of meteorites and dynamo theory indicate that a diversity of planetesimals once generated dynamo magnetic fields in their metallic cores. Likewise, the detection of a strong magnetic moment ( > 2 × 10 14 Am 2 ) at Psyche would likely indicate that the body once generated a core dynamo, implying that it formed by igneous differentiation. The Psyche Magnetometer consists of two three-axis fluxgate Sensor Units (SUs) mounted 0.7 m apart along a 2.15-m long boom and connected to two Electronics Units (EUs) located within the spacecraft bus. The Magnetometer samples at up to 50 Hz, has a range of ± 80 , 000 nT , and an instrument noise of 39 pT axis - 1 3 σ integrated over 0.1 to 1 Hz. The two pairs of SUs and EUs provide redundancy and enable gradiometry measurements to suppress noise from flight system magnetic fields. The Magnetometer will be powered on soon after launch and acquire data for the full duration of the mission. The ground data system processes the Magnetometer measurements to obtain an estimate of Psyche's dipole moment.

3.
Space Sci Rev ; 218(2): 6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400764

RESUMO

The Psyche mission's Oxidation-Reduction Working Group is focused on understanding, determining, and applying the redox state of (16) Psyche to understand the origin of a metal-rich world. The oxidation-reduction state of an asteroid, along with its temperature, parent body size, and composition, is a key parameter in determining the history of an asteroid. Determining the redox state from spacecraft data is most easily done by examining potential metal-oxide buffer pairs. The occurrence of Ni, Fe, C, Cr, P and Si, in that order, in the metal or sulfide phase of an asteroidal body indicates increasingly reduced conditions. Key observations by the Imager and Gamma-Ray and Neutron Spectrometer (GRNS) of Psyche can bracket the redox state using metal-oxide buffers. The presence of Fe,Ni metal can be confirmed by the ratios of Fe/O or Fe/Si and the concentration of Ni variability in metal across the asteroid can be determined by GRNS. The FeO concentration of silicates is complementary to the Ni concentration of metal and can be constrained using filters on the Imager. The presence of FeO in silicates from ground-based observations is one of the few measurements we already have of redox state, although available data permit a wide range of silicate compositions and mineralogies. The presence of C, P or Si concentrated in the metallic, Fe-rich portion of the asteroid, as measured by GRNS, or Ca-sulfide, determined by imaging, would indicate increasingly reducing conditions. Linkage to known types of meteorites, whether metal-rich chondrites, stony-irons or irons, expands the mineralogical, chemical and isotopic data not available from remote observations alone. Redox also controls both silicate and metal mineralogy, influencing differentiation, solidification, and subsolidus cooling, including the relative abundance of sulfur in the core and possible magnetic signatures. The redox state of Psyche, if a fully-differentiated metallic core, might constrain the location and timing of both the formation of Psyche and any oxidation it might have experienced.

4.
Sci Adv ; 6(30): eaba1303, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32754636

RESUMO

Modern meteorite classification schemes assume that no single planetary body could be source of both unmelted (chondritic) and melted (achondritic) meteorites. This dichotomy is a natural outcome of formation models assuming that planetesimal accretion occurred nearly instantaneously. However, it has recently been proposed that the accretion of many planetesimals lasted over ≳1 million years (Ma). This could have resulted in partially differentiated internal structures, with individual bodies containing iron cores, achondritic silicate mantles, and chondritic crusts. This proposal can be tested by searching for a meteorite group containing evidence for these three layers. We combine synchrotron paleomagnetic analyses with thermal, impact, and collisional evolution models to show that the parent body of the enigmatic IIE iron meteorites was such a partially differentiated planetesimal. This implies that some chondrites and achondrites simultaneously coexisted on the same planetesimal, indicating that accretion was protracted and that apparently undifferentiated asteroids may contain melted interiors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...