Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12103, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431630

RESUMO

The primary hurdle for diagnosis of some diseases is the long incubation required to culture and confirm the presence of bacteria. The concept of using microbial VOCs as "signature markers" could provide a faster and noninvasive diagnosis. Finding biomarkers is challenging due to the specificity required in complex matrices. The objectives of this study were to (1) build/test a lab-scale platform for screening of microbial VOCs and (2) apply it to Mycobacterium avium paratuberculosis; the vaccine strain of M. bovis Bacillus Calmette-Guérin; and M. kansasii to demonstrate detection times greater those typically required for culture. SPME-GC-MS was used for sampling, sample preparation, and analyses. For objective (1), a testing platform was built for headspace sampling of bacterial cultures grown in standard culture flasks via a biosecure closed-loop circulating airflow system. For (2), results show that the suites of VOCs produced by Mycobacteria ssp. change over time and that individual strains produce different VOCs. The developed method was successful in discriminating between strains using a pooled multi-group analysis, and in timepoint-specific multi- and pair-wise comparisons. The developed testing platform can be useful for minimally invasive and biosecure collection of biomarkers associated with human, wildlife and livestock diseases for development of diagnostic point-of-care and field surveillance.


Assuntos
Doenças dos Bovinos/sangue , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/sangue , Compostos Orgânicos Voláteis/isolamento & purificação , Animais , Biomarcadores/sangue , Bovinos , Doenças dos Bovinos/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Paratuberculose/microbiologia , Compostos Orgânicos Voláteis/sangue
2.
Molecules ; 24(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717185

RESUMO

In this research, we propose a novel concept for a non-destructive evaluation of volatiles emitted from ripening grapes using solid-phase microextraction (SPME). This concept is novel to both the traditional vinifera grapes and the cold-hardy cultivars. Our sample models are cold-hardy varieties in the upper Midwest for which many of the basic multiyear grape flavor and wine style data is needed. Non-destructive sampling included a use of polyvinyl fluoride (PVF) chambers temporarily enclosing and concentrating volatiles emitted by a whole cluster of grapes on a vine and a modified 2 mL glass vial for a vacuum-assisted sampling of volatiles from a single grape berry. We used SPME for either sampling in the field or headspace of crushed grapes in the lab and followed with analyses on gas chromatography-mass spectrometry (GC-MS). We have shown that it is feasible to detect volatile organic compounds (VOCs) emitted in-vivo from single grape berries (39 compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace from crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were observed for all four cultivars. However, these changes were not consistent by growing season, by location, within cultivars, or by ripening stage when analyzed by multivariate analyses such as principal component analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma compounds present in cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and diversification of agriculture in the upper Midwestern area of the U.S.


Assuntos
Frutas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Vitis/metabolismo , Compostos Orgânicos Voláteis/isolamento & purificação , Fazendas , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Humanos , Iowa , Análise Multivariada , Polivinil , Análise de Componente Principal , South Dakota , Vitis/química , Vitis/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/classificação , Vinho/análise
3.
Molecules ; 24(3)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678060

RESUMO

Finding farm-proven, robust sampling technologies for measurement of odorous volatile organic compounds (VOCs) and evaluating the mitigation of nuisance emissions continues to be a challenge. The objective of this research was to develop a new method for quantification of odorous VOCs in air using time-weighted average (TWA) sampling. The main goal was to transform a fragile lab-based technology (i.e., solid-phase microextraction, SPME) into a rugged sampler that can be deployed for longer periods in remote locations. The developed method addresses the need to improve conventional TWA SPME that suffers from the influence of the metallic SPME needle on the sampling process. We eliminated exposure to metallic parts and replaced them with a glass tube to facilitate diffusion from odorous air onto an exposed SPME fiber. A standard gas chromatography (GC) liner recommended for SPME injections was adopted for this purpose. Acetic acid, a common odorous VOC, was selected as a model compound to prove the concept. GC with mass spectrometry (GC⁻MS) was used for air analysis. An SPME fiber exposed inside a glass liner followed the Fick's law of diffusion model. There was a linear relationship between extraction time and mass extracted up to 12 h (R² > 0.99) and the inverse of retraction depth (1/Z) (R² > 0.99). The amount of VOC adsorbed via the TWA SPME using a GC glass liner to protect the SPME was reproducible. The limit of detection (LOD, signal-to-noise ratio (S/N) = 3) and limit of quantification (LOQ, S/N = 5) were 10 and 18 µg·m-3 (4.3 and 7.2 ppbV), respectively. There was no apparent difference relative to glass liner conditioning, offering a practical simplification for use in the field. The new method related well to field conditions when comparing it to the conventional method based on sorbent tubes. This research shows that an SPME fiber exposed inside a glass liner can be a promising, practical, simple approach for field applications to quantify odorous VOCs.


Assuntos
Monitoramento Ambiental , Odorantes/análise , Compostos Orgânicos Voláteis/química , Fibras na Dieta , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Manejo de Espécimes
4.
Chemosphere ; 221: 778-784, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30684775

RESUMO

Technologies for controlling gaseous emissions of livestock is of interest to producers, the public, and regulatory agencies. In our previous lab-scale study, the use of a photocatalytic coating on surfaces subjected to black ultraviolet light reduced emissions of key odorant compounds relevant to the livestock industry. Thus, an on-farm pilot-scale experiment was conducted at a commercial swine barn to evaluate a photocatalytic coating on surfaces subjected to ultraviolet light under field conditions. A flow-through reactor was constructed with a TiO2-based photocatalytic coating on the interior surfaces and black ultraviolet light fixtures. The reactor was deployed in a room downstream of the entire swine barn exhaust. Gas samples were collected from three sampling ports in the reactor, one at the inlet (control), the midpoint (half treatment) and the outlet (treatment). Compared to the control, significant reductions in emissions were observed for p-cresol (22%), odor (16%) and nitrous oxide (9%). A significant increase in carbon dioxide (3%) was also measured. Results show that the TiO2-based photocatalytic coating and black UV light are effective in mitigating odor, a key VOC responsible for downwind swine odor, and one important greenhouse effect gas when subjected to swine barn exhaust.


Assuntos
Fazendas , Gases de Efeito Estufa/isolamento & purificação , Odorantes/prevenção & controle , Raios Ultravioleta , Compostos Orgânicos Voláteis/isolamento & purificação , Animais , Catálise , Gado , Processos Fotoquímicos , Projetos Piloto , Suínos
5.
Data Brief ; 7: 1413-29, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27158660

RESUMO

The livestock and poultry production industry, regulatory agencies, and researchers lack a current, science-based guide and data base for evaluation of air quality mitigation technologies. Data collected from science-based review of mitigation technologies using practical, stakeholders-oriented evaluation criteria to identify knowledge gaps/needs and focuses for future research efforts on technologies and areas with the greatest impact potential is presented in the Literature Database tab on the air management practices tool (AMPAT). The AMPAT is web-based (available at www.agronext.iastate.edu/ampat) and provides an objective overview of mitigation practices best suited to address odor, gaseous, and particulate matter (PM) emissions at livestock operations. The data was compiled into Excel spreadsheets from a literature review of 265 papers was performed to (1) evaluate mitigation technologies performance for emissions of odor, volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), particulate matter (PM), and greenhouse gases (GHGs) and to (2) inform future research needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...