Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669992

RESUMO

We propose a new concept of photoacoustic gas sensing based on capacitive transduction which allows full integration while conserving the required characteristics of the sensor. For the sensor's performance optimization, trial and error method is not feasible due to economic and time constrains. Therefore, we focus on a theoretical optimization of the sensor reinforced by computational methods implemented in a Python programming environment. We present an analytic model to optimize the geometry of a cantilever used as a capacitive transducer in photoacoustic spectroscopy. We describe all the physical parameters which have to be considered for this optimization (photoacoustic force, damping, mechanical susceptibility, capacitive transduction, etc.). These parameters are characterized by opposite trends. They are studied and compared to obtain geometric values for which the signal output and signal-to-noise ratio are maximized.

2.
J Phys Chem A ; 123(7): 1469-1484, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30626185

RESUMO

The influence of the precursor chemical structure on secondary organic aerosol (SOA) formation was investigated through the study of the ozonolysis of two anthropogenic aromatic alkenes: 2-methylstyrene and indene. Experiments were carried out in three different simulation chambers: ICARE 7300L FEP Teflon chamber (ICARE, Orléans, France), EUPHORE FEP Teflon chamber (CEAM, Valencia, Spain), and CESAM evacuable stainless steel chamber (LISA, Créteil, France). For both precursors, SOA yield and growth were studied on a large range of initial concentrations (from ∼60 ppbv to 1.9 ppmv) and the chemical composition of both gaseous and particulate phases was investigated at a molecular level. Gas phase was described using FTIR spectroscopy and online gas chromatography coupled to mass spectrometry, and particulate chemical composition was analyzed (i) online by thermo-desorption coupled to chemical ionization mass spectrometry and (ii) offline by supercritical fluid extraction coupled to gas chromatography and mass spectrometry. The results obtained from a large set of experiments performed in three different chambers and using several complementary analytical techniques were in very good agreement. SOA yield was up to 10 times higher for indene ozonolysis than for 2-methylstyrene ozonolysis at the same reaction advancement. For 2-methylstyrene ozonolysis, formaldehyde and o-tolualdehyde were the two main gaseous phase products while o-toluic acid was the most abundant among six products detected within the particulate phase. For indene ozonolysis, traces of formic and phthalic acids as well as 11 species were detected in the gaseous phase and 11 other products were quantified in the particulate phase, where phthaldialdehyde was the main product. On the basis of the identified products, reaction mechanisms were proposed that highlight specific pathways due to the precursor chemical structure. These mechanisms were finally compared and discussed regarding SOA formation. In the case of 2-methylstyrene ozonolysis, ozone adds mainly on the external and monosubstituted double bond, yielding only one C8- and monofunctionalized Criegee intermediate and hence more volatile products as well as lower SOA mass than indene ozonolysis in similar experimental conditions. In the case of indene, ozone adds mainly on the five-carbon-ring and disubstituted C═C double bond, leading to the formation of two C9- and bifunctionalized Criegee intermediates, which then evolve via different pathways including the hydroperoxide channel and form highly condensable first-generation products.

3.
Sensors (Basel) ; 19(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888305

RESUMO

The quartz tuning fork (QTF) is a piezoelectric transducer with a high quality factor that was successfully employed in sensitive applications such as atomic force microscopy or Quartz-Enhanced Photo-Acoustic Spectroscopy (QEPAS). The variability of the environment (temperature, humidity) can lead to a drift of the QTF resonance. In most applications, regular QTF calibration is absolutely essential. Because the requirements vary greatly depending on the field of application, different characterization methods can be found in the literature. We present a review of these methods and compare them in terms of accuracy. Then, we further detail one technique, called Beat Frequency analysis, based on the transient response followed by heterodyning. This method proved to be fast and accurate. Further, we demonstrate the resonance tracking of the QTF while changing the temperature and the humidity. Finally, we integrate this characterization method in our Resonance Tracking (RT) QEPAS sensor and show the significant reduction of the signal drift compared to a conventional QEPAS sensor.

4.
J Nat Prod ; 79(11): 2846-2855, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27933900

RESUMO

Resveratrol and related oligostilbenes are defense molecules produced by grapevine in response to stresses including various elicitors or signal molecules. Together with their prominent role in planta, these compounds have been the center of much attention in recent decades due to their pharmacological properties. The cost-effective production of resveratrol derivatives such as viniferins or more structurally complex stilbene oligomers remains a challenging task. In this study, the chemical diversity of stilbenes produced by Vitis vinifera Pinot Noir hairy roots was investigated after elicitation for 4 days with a mixture of methyl jasmonate (100 µM) and cyclodextrins (50 mM). Two crude extracts obtained from the culture medium and from the hairy roots were fractionated by centrifugal partition chromatography. The fractions were chemically investigated by two complementary identification approaches involving a 13C NMR-based dereplication method and liquid chromatography coupled to mass spectrometry (LC-MS). In total, groups of 21 and 18 molecules, including flavonoids and stilbenes, were detected in the culture medium and root extracts, respectively. These included resveratrol monomers, dimers, trimers, and a tetramer, thus highlighting the ability of elicited hairy root culture systems to synthesize a wide diversity of secondary metabolites of pharmaceutical significance. The main compounds were unambiguously identified as trans-resveratrol, ε-viniferin, trans-piceatannol, pallidol, scirpusin A, eriodictyol, naringenin, vitisin B, and maackin.


Assuntos
Estilbenos/análise , Vitis/química , Benzofuranos/análise , Benzofuranos/química , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Cromatografia Líquida , Ciclopentanos/farmacologia , Flavanonas/análise , Flavonoides/química , Flavonoides/farmacologia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oxilipinas/farmacologia , Fenóis/análise , Fenóis/química , Raízes de Plantas/química , Compostos Policíclicos/análise , Compostos Policíclicos/química , Resveratrol , Estilbenos/química , Estilbenos/isolamento & purificação , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...