Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(24): e2309365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38268140

RESUMO

Miniaturized solid state capacitors leveraging migration of unipolar ions in a single polyelectrolyte layer sandwiched between metal electrodes, namely, polyelectrolyte capacitors (PECs), have been recently reported with areal capacitance up to 100-200 nF mm-2. Nonetheless, application of PECs in consumer and industrial electronics has been hindered so far by their small operational frequency range, up to a few kHz, due to the resistive behavior (phase angle >-45°) of PECs in the range kHz-to-MHz. Here, it is reported on multilayer polyelectrolyte capacitors (mPECs) that leverage as dielectric an ambipolar nanometer-thick (down to 10 nm) stack of anionic and cationic polyelectrolytes assembled layer-by-layer between metal electrodes to eliminate the resistive behavior at frequencies from kHz to MHz. This significantly extends the operational range of mPECs over PECs. mPECs with areal capacitance as high as 25 nF mm-2 at 20 Hz and full capacitive behavior from 100 mHz to 10 MHz are demonstrated using different assembling conditions and anionic/cationic polyelectrolyte pairs. The mPECs reliably operate over time for >300 million cycles, at different biasing voltages up to 3 V, and temperatures up to 80 °C, showing a reversible capacitive behavior without significant hysteresis. Application of mPECs in flexible electronics, also operating at high frequency, is envisaged.

2.
J Phys Chem Lett ; 13(40): 9517-9525, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36200785

RESUMO

Mixed-cation lead mixed-halide perovskites are the best candidates for perovskite-based photovoltaics, thanks to their higher efficiency and stability compared to the single-cation single-halide parent compounds. TripleMix (Cs0.05MA0.14FA0.81PbI2.55Br0.45 with FA = formamidinium and MA = methylammonium) is one of the most efficient and stable mixed perovskites for single-junction solar cells. The microscopic reasons why triple-cation perovskites perform so well are still under debate. In this work, we investigated the structure and dynamics of TripleMix by exploiting multinuclear solid-state nuclear magnetic resonance (SSNMR), which can provide this information at a level of detail not accessible by other techniques. 133Cs, 13C, 1H, and 207Pb SSNMR spectra confirmed the inclusion of all ions in the perovskite, without phase segregation. Complementary measurements showed a peculiar longitudinal relaxation behavior for the 1H and 207Pb nuclei in TripleMix with respect to single-cation single-halide perovskites, suggesting slower dynamics of both organic cations and halide anions, possibly related to the high photovoltaic performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...