Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(20): 168259, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660941

RESUMO

An important pathogenicity factor of SARS-CoV-2 and related coronaviruses is Non-structural protein 1 (Nsp1), which suppresses host gene expression and stunts antiviral signaling. SARS-CoV-2 Nsp1 binds the ribosome to inhibit translation through mRNA displacement and induces degradation of host mRNAs. Here we show that Nsp1-dependent host shutoff is conserved in diverse coronaviruses, but only Nsp1 from ß-Coronaviruses (ß-CoV) inhibits translation through ribosome binding. The C-terminal domain (CTD) of all ß-CoV Nsp1s confers high-affinity ribosome binding despite low sequence conservation. Modeling of interactions of four Nsp1s with the ribosome identified the few absolutely conserved amino acids that, together with an overall conservation in surface charge, form the ß-CoV Nsp1 ribosome-binding domain. Contrary to previous models, the Nsp1 ribosome-binding domain is an inefficient translation inhibitor. Instead, the Nsp1-CTD likely functions by recruiting Nsp1's N-terminal "effector" domain. Finally, we show that a cis-acting viral RNA element has co-evolved to fine-tune SARS-CoV-2 Nsp1 function, but does not provide similar protection against Nsp1 from related viruses. Together, our work provides new insight into the diversity and conservation of ribosome-dependent host-shutoff functions of Nsp1, knowledge that could aid future efforts in pharmacological targeting of Nsp1 from SARS-CoV-2 and related human-pathogenic ß-CoVs. Our study also exemplifies how comparing highly divergent Nsp1 variants can help to dissect the different modalities of this multi-functional viral protein.


Assuntos
Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Ribossomos , SARS-CoV-2 , Proteínas não Estruturais Virais , Humanos , Aminoácidos/química , Aminoácidos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/química , Sequência Conservada
2.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333070

RESUMO

An important pathogenicity factor of SARS-CoV-2 and related coronaviruses is Nsp1, which suppresses host gene expression and stunts antiviral signaling. SARS-CoV-2 Nsp1 binds the ribosome to inhibit translation through mRNA displacement and induces degradation of host mRNAs through an unknown mechanism. Here we show that Nsp1-dependent host shutoff is conserved in diverse coronaviruses, but only Nsp1 from ß-CoV inhibits translation through ribosome binding. The C-terminal domain of all ß-CoV Nsp1s confers high-affinity ribosome-binding despite low sequence conservation. Modeling of interactions of four Nsp1s to the ribosome identified few absolutely conserved amino acids that, together with an overall conservation in surface charge, form the ß-CoV Nsp1 ribosome-binding domain. Contrary to previous models, the Nsp1 ribosome-binding domain is an inefficient translation inhibitor. Instead, the Nsp1-CTD likely functions by recruiting Nsp1's N-terminal "effector" domain. Finally, we show that a viral cis -acting RNA element has co-evolved to fine-tune SARS-CoV-2 Nsp1 function, but does not provide similar protection against Nsp1 from related viruses. Together, our work provides new insight into the diversity and conservation of ribosome-dependent host-shutoff functions of Nsp1, knowledge that could aide future efforts in pharmacological targeting of Nsp1 from SARS-CoV-2, but also related human-pathogenic ß-coronaviruses. Our study also exemplifies how comparing highly divergent Nsp1 variants can help to dissect the different modalities of this multi-functional viral protein.

3.
Genetics ; 216(4): 879-890, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268390

RESUMO

Environmental toxicants are chemicals that negatively affect human health. Although there are numerous ways to limit exposure, the ubiquitous nature of certain environmental toxicants makes it impossible to avoid them entirely. Consequently, scientists are continuously working toward developing strategies for combating their harmful effects. Using the nematode Caenorhabditis elegans, a model with many genetic and physiological similarities to humans, researchers in the Colaiácovo laboratory have identified several molecular mechanisms by which the toxic agent bisphenol A (BPA) interferes with reproduction. Here, we address their recent discovery that a widely available compound, Coenzyme Q10 (CoQ10), can rescue BPA-induced damage. This work is significant in that it poses a low-cost method for improving reproductive success in humans. The goal of this primer is to assist educators and students with navigating the paper entitled "Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline." It is ideally suited for integration into an upper-level undergraduate course such as Genetics, Cell and Molecular Biology, Developmental Biology, or Toxicology. The primer provides background information on the history of BPA, the utility of the C. elegans germ line as a model for studying reproductive toxicity, and research methods including assessment of programmed cell death, fluorescent microscopy applications, and assays to quantify gene expression. Questions for deeper exploration in-class or online are provided.Related article in GENETICS: Hornos Carneiro MF, Shin N, Karthikraj R, Barbosa F Jr, Kannan K, Colaiácovo MP. Antioxidant CoQ10 restores fertility by rescuing bisphenol A-induced oxidative DNA damage in the Caenorhabditis elegans Germline. Genetics 214:381-395.


Assuntos
Caenorhabditis elegans/genética , Biologia do Desenvolvimento/educação , Genética/educação , Toxicologia/educação , Poluentes Ocupacionais do Ar/toxicidade , Animais , Compostos Benzidrílicos/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Dano ao DNA , Mutagênese , Fenóis/toxicidade , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...