Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 50(3): 655-667.e4, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893588

RESUMO

Restoration of barrier-tissue integrity after injury is dependent on the function of immune cells and stem cells (SCs) residing in the tissue. In response to skin injury, hair-follicle stem cells (HFSCs), normally poised for hair generation, are recruited to the site of injury and differentiate into cells that repair damaged epithelium. We used a SC fate-mapping approach to examine the contribution of regulatory T (Treg) cells to epidermal-barrier repair after injury. Depletion of Treg cells impaired skin-barrier regeneration and was associated with a Th17 inflammatory response and failed HFSC differentiation. In this setting, damaged epithelial cells preferentially expressed the neutrophil chemoattractant CXCL5, and blockade of CXCL5 or neutrophil depletion restored barrier function and SC differentiation after epidermal injury. Thus, Treg-cell regulation of localized inflammation enables HFSC differentiation and, thereby, skin-barrier regeneration, with implications for the maintenance and repair of other barrier tissues.


Assuntos
Diferenciação Celular/fisiologia , Quimiocina CXCL5/metabolismo , Epiderme/metabolismo , Folículo Piloso/metabolismo , Interleucina-17/metabolismo , Regeneração/fisiologia , Linfócitos T Reguladores/metabolismo , Animais , Células Epidérmicas/metabolismo , Células Epiteliais/metabolismo , Cabelo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo
2.
Stem Cell Res ; 31: 122-126, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30075366

RESUMO

We have generated an induced pluripotent stem cell (iPSC) line KCLi001-A (iOP118) from a female atopic dermatitis (AD) patient, heterozygous for the loss-of-function mutation c.2282del4 in the filaggrin gene (FLG). Epidermal keratinocytes were reprogrammed using non-integrating Sendai virus vectors. The entire process of derivation and expansion of AD-iPSCs were performed under xeno-free culture conditions. Characterization of KCLi001-A line included molecular karyotyping, mutation screening using restriction enzyme digestion and Sanger sequencing, while pluripotency and differentiation potential were confirmed by expression of associated markers in vitro and by in vivo teratoma assay.


Assuntos
Dermatite Atópica/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Dermatite Atópica/patologia , Feminino , Proteínas Filagrinas , Heterozigoto , Humanos , Mutação
3.
Nat Commun ; 5: 5442, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25421844

RESUMO

Developmental history shapes the epigenome and biological function of differentiated cells. Epigenomic patterns have been broadly attributed to the three embryonic germ layers. Here we investigate how developmental origin influences epigenomes. We compare key epigenomes of cell types derived from surface ectoderm (SE), including keratinocytes and breast luminal and myoepithelial cells, against neural crest-derived melanocytes and mesoderm-derived dermal fibroblasts, to identify SE differentially methylated regions (SE-DMRs). DNA methylomes of neonatal keratinocytes share many more DMRs with adult breast luminal and myoepithelial cells than with melanocytes and fibroblasts from the same neonatal skin. This suggests that SE origin contributes to DNA methylation patterning, while shared skin tissue environment has limited effect on epidermal keratinocytes. Hypomethylated SE-DMRs are in proximity to genes with SE relevant functions. They are also enriched for enhancer- and promoter-associated histone modifications in SE-derived cells, and for binding motifs of transcription factors important in keratinocyte and mammary gland biology. Thus, epigenomic analysis of cell types with common developmental origin reveals an epigenetic signature that underlies a shared gene regulatory network.


Assuntos
Ectoderma/metabolismo , Epigênese Genética , Redes Reguladoras de Genes , Diferenciação Celular , Células Cultivadas , Metilação de DNA , Ectoderma/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Regiões Promotoras Genéticas , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...