Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Spectrosc ; 88(4): 765-771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34538886

RESUMO

With the COVID-19 outbreak, many challenges are posed before the scientific world to curb this pandemic. The diagnostic testing, treatment, and vaccine development for this infection caught the scientific community's immediate attention. Currently, despite the global proliferation of COVID-19 vaccination, the specific treatment for this disease is yet unknown. Meanwhile, COVID-19 detection or diagnosis using polymerase chain reaction (PCR)-based me hods is expensive and less reliable. Moreover, this technique needs much time to furnish the results. Thus, the elaboration of a highly sensitive and fast method of COVID-19 diagnostics is of great importance. The spectroscopic approach is herein suggested as an efficient detection methodology for COVID-19 diagnosis, particularly Raman spectroscopy, infrared spectroscopy, and mass spectrometry.

2.
Photodiagnosis Photodyn Ther ; 19: 363-374, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743589

RESUMO

Photodynamic therapy (PDT) is a treatment that uses photosensitizing agents to kill cancer cells. Scientific community has been eager for decades to design an efficient PDT drug. Under such purview, the current report deals with the computational photodynamic behavior of ruthenium(II) nitrosyl complex containing N, N'-salicyldehyde-ethylenediimine (SalenH2), the synthesis and X-ray crystallography of which is already known [Ref. 38,39]. Gaussian 09W software package was employed to carry out the density functional (DFT) studies. DFT calculations with Becke-3-Lee-Yang-Parr (B3LYP)/Los Alamos National Laboratory 2 Double Z (LanL2DZ) specified for Ru atom and B3LYP/6-31G(d,p) combination for all other atoms were used using effective core potential method. Both, the ground and excited states of the complex were evolved. Some known photosensitizers were compared with the target complex. Pthalocyanine and porphyrin derivatives were the compounds selected for the respective comparative study. It is suggested that effective photoactivity was found due to the presence of ruthenium core in the model complex. In addition to the evaluation of theoretical aspects in vitro anticancer aspects against COLO-205 human cancer cells have also been carried out with regard to the complex. More emphasis was laid to extrapolate DFT to depict the chemical power of the target compound to release nitric oxide. A promising visible light triggered nitric oxide releasing power of the compound has been inferred. In vitro antiproliferative studies of [RuCl3(PPh3)3] and [Ru(NO)(Salen)(Cl)] have revealed the model complex as an excellent anticancer agent. From IC50 values of 40.031mg/mL in former and of 9.74mg/mL in latter, it is established that latter bears more anticancer potentiality. From overall study the DFT based structural elucidation and the efficiency of NO, Ru and Salen co-ligands has shown promising drug delivery property and a good candidacy for both chemotherapy as well as light therapy.


Assuntos
Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Compostos de Rutênio/farmacologia , Linhagem Celular Tumoral , Computadores Moleculares , Humanos
3.
Arch Ital Biol ; 147(1-2): 21-35, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19678594

RESUMO

The cyto-architecture and morphology of the neuronal types of the dorsomedial cortex of the lizard, Hemidactylus flaviviridis has been studied with the help of Cresyl violet staining and Golgi impregnation method. The dorsomedial cerebral cortex displayed three neuronal layers. Layer-I contains only few neuronal somas and also the dendrites ascending from the subjacent layers. Layer-II is characterized by two to three cell thick densely packed neuronal somas. Layer-III contains loosely packed neuronal somas and the dendrites and axon descending from layer-I and II. Below the layer-III an ependymal layer is observed just above the ventricle. Six classes of neurons were distinguished in the cellular layer of dorsomedial cortex of Hemidactylus flaviviridis: bitufted neurons, pyramidal neurons, inverted pyramidal neurons, bipyramidal neurons, multipolar neurons, and candelabra-like monotufted neurons. The pyramidal cells were large showing more or less single type present in the cellular layer. The multipolar neurons have mostly intracortical dendritic branching and connections. Bipyramidal neurons showed pyramidal appearance of their soma and send dendritic branches towards the superficial plexiform layer and deep plexiform layer. The candelabra-like monotufted neurons have very high dendritic branching. The comparison of the neuronal types of dorsomedial cortex of reptiles with the parahippocampal area of birds and CA3 region of mammalian hippocampus suggests possibility of their homology.


Assuntos
Córtex Cerebral/citologia , Lagartos/anatomia & histologia , Neurônios/classificação , Neurônios/ultraestrutura , Animais , Coloração pela Prata/métodos
4.
Cell Tissue Res ; 336(3): 393-409, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19415335

RESUMO

The present study, based on neurohistological techniques (Nissl-staining, Golgi-impregnation), focuses on the cytoarchitecture of the corticoid complex in the strawberry finch, Estrilda amandava. This complex in birds occupies the dorsolateral surface of the telencephalic pallium and remains subdivided into an intermediate corticoid area (CI) and a dorsolateral corticoid area (CDL). The CDL in the strawberry finch is a thin superficial part of the caudal pallium adjoining the medially situated hippocampal formation, whereas the CI is demarcated between the CDL and the parahippocampal area of telencephalon. Neurons of the corticoid complex are classified into three main cell groups: predominant projection neurons, local circuit neurons and stellate neurons. The spinous projection neurons send out distant projecting axons that typically extend several varicose collaterals. Most of these collaterals lie parallel to the ventricle. These neurons are subclassified into pyramidal neurons (localized only in the CI) and multipolar neurons (present in both the CI and CDL). The CDL also possesses small and medium-sized horizontal cells, which are bitufted or multipolar with smooth, moderately branching dendrites. The aspinous local circuit neurons extend short axons that ramify locally. Stellate neurons have sparse spinous dendrites and locally arborizing axons. The corticoid complex of birds corresponds to the lateral cerebral cortex of lizards and to the entorhinal cortex of mammals on the basis of neuronal morphology and bidirectional connections between adjacent areas.


Assuntos
Tentilhões/fisiologia , Neurônios/classificação , Telencéfalo/citologia , Animais , Complexo de Golgi/metabolismo , Masculino , Neurônios/citologia , Células Piramidais/citologia
5.
Cell Mol Biol (Noisy-le-grand) ; 53(5): 103-20, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17543239

RESUMO

Neurons in the hippocampal complex (dorsomedial forebrain) were described and located following Golgi impregnation. Five fields were recognized in the hippocampal complex: medial and lateral hippocampus, parahippocampal area, central field of the parahippocampal area and crescent field. In the medial hippocampus three layers have been observed: suprapyramidal towards the pial surface, pyramidal at the central and infrapyramidal adjacent to the ventricle. Neurons of the hippocampal complex were classified in to two main cell groups: predominant projection neurons with spinous dendrites and local circuit neurons. Projection neurons were further sub classified into three main types: pyramidal, pyramidal like, and multipolar neurons. In addition to these neurons, monotufted and bitufted neurons were also observed in the medial and lateral hippocampus with low frequency. The pyramidal neurons were dominant neuronal types in the pyramidal layer-II of the medial hippocampus, mixed with pyramidal like and multipolar neurons. Pyramidal and pyramidal-like neurons were found restricted in the pyramidal layer II of the medial hippocampus while the multipolar neurons were uniformly distributed in all subfields of the hippocampal complex. In the lateral hippocampus irregular shaped radial glial cells were present near the ventricular wall and projecting their dendrites towards the pia. Second group of local circuit neurons with local arborization of their projections were present in the medial hippocampus and in parahippocampal area.


Assuntos
Hipocampo/anatomia & histologia , Passeriformes/anatomia & histologia , Animais , Dendritos/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Fotomicrografia/métodos , Células Piramidais/anatomia & histologia , Células Piramidais/citologia , Células Piramidais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...