Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Bot ; 108(1): 113-128, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33426651

RESUMO

PREMISE: Events of accelerated species diversification represent one of Earth's most celebrated evolutionary outcomes. Northern Andean high-elevation ecosystems, or páramos, host some plant lineages that have experienced the fastest diversification rates, likely triggered by ecological opportunities created by mountain uplifts, local climate shifts, and key trait innovations. However, the mechanisms behind rapid speciation into the new adaptive zone provided by these opportunities have long remained unclear. METHODS: We address this issue by studying the Venezuelan clade of Espeletia, a species-rich group of páramo-endemics showing a dazzling ecological and morphological diversity. We performed several comparative analyses to study both lineage and trait diversification, using an updated molecular phylogeny of this plant group. RESULTS: We showed that sets of either vegetative or reproductive traits have conjointly diversified in Espeletia along different vegetation belts, leading to adaptive syndromes. Diversification in vegetative traits occurred earlier than in reproductive ones. The rate of species and morphological diversification showed a tendency to slow down over time, probably due to diversity dependence. We also found that closely related species exhibit significantly more overlap in their geographic distributions than distantly related taxa, suggesting that most events of ecological divergence occurred at close geographic proximity within páramos. CONCLUSIONS: These results provide compelling support for a scenario of small-scale ecological divergence along multiple ecological niche dimensions, possibly driven by competitive interactions between species, and acting sequentially over time in a leapfrog pattern.


Assuntos
Asteraceae , Radiação , Evolução Biológica , Ecossistema , Especiação Genética , Filogenia
3.
Evol Appl ; 13(6): 1435-1450, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32684968

RESUMO

Identifying the mechanisms involved in the formation and maintenance of species is a central question in evolutionary biology, and distinguishing the selective drivers of populations' divergence from demographic processes is of particular interest to better understand the speciation process. Hybrid zones are recognized to provide ideal places to investigate the genetic architecture of speciation and to identify the mechanisms allowing diverging species to maintain their integrity in the face of gene flow. Here, we studied two alpine butterfly species, Coenonympha macromma and C. gardetta, which can be found flying together and hybridizing in narrow contact zones in the southern French Alps. We characterized the genomic composition of individuals, their morphology and their local habitat requirements, within and around a hybrid zone. Genetic diversity analysis at 794 SNPs revealed that all individuals within the hybrid zone were highly admixed, which was not the case outside the hybrid zone. Cline analysis showed that, despite ongoing hybridization, 56 out of 122 loci differentially fixed or nearly so between the two species were impermeable to introgression across the sharp hybrid zone (9 km wide). We also found concordance in cline position and width among genetic, morphological and environmental variation, suggesting a coupling of different reproductive barriers. Habitat characteristics such as the presence of trees and shrubs and the start of the growing season were strongly associated with the genetic variation, and we found evidence of divergence at genetic markers associated with morphology and physiology, putatively involved in visual or environmental reproductive isolation. We discuss the various behavioural and ecological factors that might interplay to maintain current levels of divergence and gene flow between this species pair.

4.
Ecol Evol ; 9(11): 6444-6457, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236234

RESUMO

Until complete reproductive isolation is achieved, the extent of differentiation between two diverging lineages is the result of a dynamic equilibrium between genetic isolation and mixing. This is especially true for hybrid taxa, for which the degree of isolation in regard to their parental species is decisive in their capacity to rise as a new and stable entity. In this work, we explored the past and current patterns of hybridization and divergence within a complex of closely related butterflies in the genus Coenonympha in which two alpine species, C. darwiniana and C. macromma, have been shown to result from hybridization between the also alpine C. gardetta and the lowland C. arcania. By testing alternative scenarios of divergence among species, we show that gene flow has been uninterrupted throughout the speciation process, although leading to different degrees of current genetic isolation between species in contact zones depending on the pair considered. Nonetheless, at broader geographic scale, analyses reveal a clear genetic differentiation between hybrid lineages and their parental species, pointing out to an advanced stage of the hybrid speciation process. Finally, the positive correlation observed between ecological divergence and genetic isolation among these butterflies suggests a potential role for ecological drivers during their speciation processes.

5.
Syst Biol ; 67(6): 1041-1060, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339252

RESUMO

The subtribe Espeletiinae (Asteraceae), endemic to the high-elevations in the Northern Andes, exhibits an exceptional diversity of species, growth-forms, and reproductive strategies. This complex of 140 species includes large trees, dichotomous trees, shrubs and the extraordinary giant caulescent rosettes, considered as a classic example of adaptation in tropical high-elevation ecosystems. The subtribe has also long been recognized as a prominent case of adaptive radiation, but the understanding of its evolution has been hampered by a lack of phylogenetic resolution. Herein, we produce the first fully resolved phylogeny of all morphological groups of Espeletiinae, using whole plastomes and about a million nuclear nucleotides obtained with an original de novo assembly procedure without reference genome, and analyzed with traditional and coalescent-based approaches that consider the possible impact of incomplete lineage sorting and hybridization on phylogenetic inference. We show that the diversification of Espeletiinae started from a rosette ancestor about 2.3 Ma, after the final uplift of the Northern Andes. This was followed by two independent radiations in the Colombian and Venezuelan Andes, with a few trans-cordilleran dispersal events among low-elevation tree lineages but none among high-elevation rosettes. We demonstrate complex scenarios of morphological change in Espeletiinae, usually implying the convergent evolution of growth-forms with frequent loss/gains of various traits. For instance, caulescent rosettes evolved independently in both countries, likely as convergent adaptations to life in tropical high-elevation habitats. Tree growth-forms evolved independently three times from the repeated colonization of lower elevations by high-elevation rosette ancestors. The rate of morphological diversification increased during the early phase of the radiation, after which it decreased steadily towards the present. On the other hand, the rate of species diversification in the best-sampled Venezuelan radiation was on average very high (3.1 spp/My), with significant rate variation among growth-forms (much higher in polycarpic caulescent rosettes). Our results point out a scenario where both adaptive morphological evolution and geographical isolation due to Pleistocene climatic oscillations triggered an exceptionally rapid radiation for a continental plant group.


Assuntos
Asteraceae/classificação , Asteraceae/genética , Genoma de Planta/genética , Filogenia , Adaptação Fisiológica/genética , Colômbia , Clima Tropical , Venezuela
6.
Biophys Rev ; 10(5): 1465-1477, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28871552

RESUMO

Tarantula's leg muscle thick filament is the ideal model for the study of the structure and function of skeletal muscle thick filaments. Its analysis has given rise to a series of structural and functional studies, leading, among other things, to the discovery of the myosin interacting-heads motif (IHM). Further electron microscopy (EM) studies have shown the presence of IHM in frozen-hydrated and negatively stained thick filaments of striated, cardiac, and smooth muscle of bilaterians, most showing the IHM parallel to the filament axis. EM studies on negatively stained heavy meromyosin of different species have shown the presence of IHM on sponges, animals that lack muscle, extending the presence of IHM to metazoans. The IHM evolved about 800 MY ago in the ancestor of Metazoa, and independently with functional differences in the lineage leading to the slime mold Dictyostelium discoideum (Mycetozoa). This motif conveys important functional advantages, such as Ca2+ regulation and ATP energy-saving mechanisms. Recent interest has focused on human IHM structure in order to understand the structural basis underlying various conditions and situations of scientific and medical interest: the hypertrophic and dilated cardiomyopathies, overfeeding control, aging and hormone deprival muscle weakness, drug design for schistosomiasis control, and conditioning exercise physiology for the training of power athletes.

7.
Mol Ecol ; 24(24): 6209-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26581657

RESUMO

Hybridization has become a central element in theories of animal evolution during the last decade. New methods in population genomics and statistical model testing now allow the disentangling of the complexity that hybridization brings into key evolutionary processes such as local adaptation, colonization of new environments, species diversification and extinction. We evaluated the consequences of hybridization in a complex of three alpine butterflies in the genus Coenonympha, by combining morphological, genetic and ecological analyses. A series of approximate Bayesian computation procedures based on a large SNP data set strongly suggest that the Darwin's Heath (Coenonympha darwiniana) originated through hybridization between the Pearly Heath (Coenonympha arcania) and the Alpine Heath (Coenonympha gardetta) with different parental contributions. As a result of hybridization, the Darwin's Heath presents an intermediate morphology between the parental species, while its climatic niche seems more similar to the Alpine Heath. Our results also reveal a substantial genetic and morphologic differentiation between the two geographically disjoint Darwin's Heath lineages leading us to propose the splitting of this taxon into two different species.


Assuntos
Borboletas/genética , Especiação Genética , Hibridização Genética , Animais , Teorema de Bayes , Evolução Biológica , França , Genética Populacional , Itália , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Suíça
8.
BMC Evol Biol ; 14(1): 28, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24533965

RESUMO

BACKGROUND: Geographic barriers to gene flow and divergence among populations in sexual traits are two important causes of genetic isolation which may lead to speciation. Genetic isolation may be facilitated if these two mechanisms act synergistically. The guppy from the Cumaná region (within the Cariaco drainage) of eastern Venezuela has been previously described as a case of incipient speciation driven by sexual selection, significantly differentiated in sexual colouration and body shape from the common guppy, Poecilia reticulata. The latter occurs widely in northern Venezuela, including the south-eastern side of Cordillera de la Costa, where it inhabits streams belonging to the San Juan drainage. Here, we present molecular and morphological analyses of differentiation among guppy populations in the Cariaco and San Juan drainages. Our analyses are based on a 953 bp long mtDNA fragment, a set of 15 microsatellites (519 fish from 20 populations), and four phenotypic traits. RESULTS: Both microsatellite and mtDNA data showed that guppies inhabiting the two drainages are characterised by a significant genetic differentiation, but a higher proportion of the genetic variance was distributed among populations within regions. Most guppies in the Cariaco drainage had mtDNA from a distinct lineage, but we also found evidence for widespread introgression of mtDNA from the San Juan drainage into the Cariaco drainage. Phenotypically, populations in the two regions differed significantly only in the number of black crescents. Phenotypic clustering did not support existence of two distinct groupings, but indicated a degree of distinctiveness of Central Cumaná (CC) population. However, CC population showed little differentiation at the neutral markers from the proximate populations within the Cariaco drainage. CONCLUSIONS: Our findings are consistent with only partial genetic isolation between the two geographic regions and indicate that the geographic barrier of Cordillera de la Costa has not played an important role in strengthening the incomplete pre-zygotic reproductive barrier between Cumaná and common guppy. Significant phenotypic differentiation between genetically similar (in terms of neutral variation) populations suggests that mate choice can maintain divergence at sexually selected traits despite gene flow. However, neither genetic nor phenotypic clustering supported delineation of two species within the region.


Assuntos
Poecilia/anatomia & histologia , Poecilia/genética , Animais , DNA Mitocondrial/genética , Análise Discriminante , Feminino , Fluxo Gênico , Deriva Genética , Variação Genética , Masculino , Repetições de Microssatélites , Poecilia/classificação , Análise de Componente Principal , Rios , Venezuela
9.
J Evol Biol ; 22(8): 1708-20, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19549137

RESUMO

Genome-wide analyses of the transcriptome have suggested that male-biased genes are the first targets of genomic incompatibilities (g.i.) in inter-specific hybrids. However, those studies have almost invariably focused on Drosophila species that diverged at least 0.9 Ma, and with sterile male hybrids. Here, we use microarrays to analyse patterns of gene expression in very closely related (divergence <12,000 years), sympatric, but ecologically divergent anadromous and resident populations of brook charr (Salvelinus fontinalis) and their F(1) hybrids. Our results show a dramatic breakdown of gene expression patterns in hybrids compared with their parental relatives. Several disrupted genes are related to energetic metabolism, immune response, osmoregulation and protection against oxidative stress, and none has sex-biased functions. Besides, pure individuals show no expression differences at most of the genes disrupted in hybrids, which may suggest the operation of some form of stabilizing selection. Taken together, these results both confirm the idea that perturbations of regulatory networks represent a significant source of g.i. and support the suggestion that developmental pathways can diverge through time without any manifest change in the phenotypic outcome. While the role of other evolutionary forces (e.g. genetic drift) cannot be ruled out, this study suggests that ecological selective processes may provide the initial driving force behind disruption of gene expression in inter-specific hybrids.


Assuntos
Expressão Gênica , Truta/genética , Análise de Variância , Animais , DNA Complementar , Hibridização Genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade da Espécie
10.
Evolution ; 63(10): 2611-26, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19545268

RESUMO

We build a spatial individual-based multilocus model of homoploid hybrid speciation tailored for a tentative case of hybrid origin of Heliconius heurippa from H. melpomene and H. cydno in South America. Our model attempts to account for empirical patterns and data on genetic incompatibility, mating preferences and selection by predation (both based on coloration patterns), habitat preference, and local adaptation for all three Heliconius species. Using this model, we study the likelihood of recombinational speciation and identify the effects of various ecological and genetic parameters on the dynamics, patterns, and consequences of hybrid ecological speciation. Overall, our model supports the possibility of hybrid origin of H. heurippa under certain conditions. The most plausible scenario would include hybridization between H. melpomene and H. cydno in an area geographically isolated from the rest of both parental species with subsequent long-lasting geographic isolation of the new hybrid species, followed by changes in the species ranges, the secondary contact, and disappearance of H. melpomene-type ecomorph in the hybrid species. However, much more work (both empirical and theoretical) is necessary to be able to make more definite conclusions on the importance of homoploid hybrid speciation in animals.


Assuntos
Biodiversidade , Borboletas/classificação , Ecologia , Clima Tropical , Animais , Modelos Teóricos , América do Sul
11.
Mol Ecol ; 17(21): 4699-712, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18828780

RESUMO

In Heliconius butterflies, it has been proposed that speciation occurs through a combination of divergence in ecological habitat preferences and mimetic colour patterns. Here we test this hypothesis by investigating a parapatric form of the widespread species Heliconius erato. Mendelian (colour patterns) and molecular genetic data permit us to address hypotheses about introgression and genetic differentiation between different populations. Combined analysis of colour pattern, microsatellite loci and mitochondrial DNA showed that Heliconius erato venus and Heliconius erato chestertonii form a bimodal hybrid zone implying partial reproductive isolation. In a sample of 121 individuals collected in sympatry, 25% were hybrids representing a significant deficit of heterozygotes compared to the Hardy-Weinberg expectation. Seven microsatellite loci, analysed for a subset of these individuals, showed marked differentiation between the parental taxa, and unambiguously identified two genotypic clusters concordant with our phenotypic classification of individuals. Mitochondrial DNA analysis showed H. erato venus as a monophyletic group well differentiated from H. erato chestertonii, implying a lack of historical introgression between the populations. Heliconius erato chestertonii is therefore an incipient species that maintains its integrity despite high levels of hybridization. Moreover, H. erato chestertonii is found at higher altitudes than other races of H. erato and has a distinct colour pattern and mimetic relationship. Hence, there are now two examples of parapatric incipient species related to H. erato, H. himera and H. erato chestertonii, both of which are associated with higher altitudes, more arid habitats and distinct mimetic relationships. This implies that parapatric habitat adaptation is a likely cause of speciation in this group.


Assuntos
Borboletas/genética , Especiação Genética , Genética Populacional , Hibridização Genética , Pigmentação/genética , Alelos , Animais , Borboletas/classificação , Colômbia , DNA Mitocondrial/genética , Ecossistema , Evolução Molecular , Frequência do Gene , Genes de Insetos , Genótipo , Desequilíbrio de Ligação , Repetições de Microssatélites , Filogenia , Reprodução/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
12.
Philos Trans R Soc Lond B Biol Sci ; 363(1506): 3047-54, 2008 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-18579480

RESUMO

Homoploid hybrid speciation (HHS) is the establishment of a novel species through introgressive hybridization without a change in chromosome number. We discuss different routes by which this might occur and propose a novel term, 'hybrid trait speciation', which combines the idea that hybridization can generate adaptive novelty with the 'magic trait' model of ecological speciation. Heliconius butterflies contain many putative examples of hybrid colour patterns, but only recently has the HHS hypothesis been tested explicitly in this group. Molecular data has shown evidence for gene flow between many distinct species. Furthermore, the colour pattern of Heliconius heurippa can be recreated in laboratory crosses between Heliconius melpomene and Heliconius cydno and, crucially, plays a role in assortative mating between the three species. Nonetheless, although the genome of H. heurippa shows evidence for hybridization, it is not a mosaic of the two parental species. Instead, ongoing hybridization has likely blurred any signal of the original speciation event. We argue that where hybridization leads to novel adaptive traits that also cause reproductive isolation, it is likely to trigger speciation.


Assuntos
Adaptação Biológica/genética , Borboletas/genética , Especiação Genética , Genética Populacional , Hibridização Genética , Modelos Genéticos , Animais , Fluxo Gênico/genética , Pigmentação/genética , Especificidade da Espécie
13.
Mol Ecol ; 17(19): 4181-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19378399

RESUMO

Among animals, evidence for homoploid hybrid speciation (HHS, i.e. the creation of a hybrid lineage without a change in chromosome number) was limited until recently to the virgin chub, Gila seminuda, and some controversial data in support of hybrid status for the red wolf, Canis rufus. This scarcity of evidence, together with pessimistic attitudes among zoologists about the evolutionary importance of hybridisation, prompted the view that HHS is extremely rare among animals, especially as compared with plants. However, in recent years, the literature on animal HHS has expanded to include several new putative examples in butterflies, ants, flies and fishes. We argue that this evidence suggests that HHS is far more common than previously thought and use it to provide insights into some of the genetic and ecological aspects associated with this type of speciation among animals.


Assuntos
Especiação Genética , Haploidia , Hibridização Genética , Ploidias , Animais , Formigas/genética , Borboletas/genética , Dípteros/genética , Ecologia , Peixes/genética , Reprodução , Especificidade da Espécie
14.
PLoS Biol ; 4(10): e303, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17002517

RESUMO

We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a "supergene", determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic "supergene" polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.


Assuntos
Biologia , Padronização Corporal , Borboletas/fisiologia , Modelos Biológicos , Animais , Biodiversidade , Cromossomos Artificiais Bacterianos , Sequência Conservada , Cruzamentos Genéticos , Feminino , Masculino , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo
15.
Nature ; 441(7095): 868-71, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16778888

RESUMO

Speciation is generally regarded to result from the splitting of a single lineage. An alternative is hybrid speciation, considered to be extremely rare, in which two distinct lineages contribute genes to a daughter species. Here we show that a hybrid trait in an animal species can directly cause reproductive isolation. The butterfly species Heliconius heurippa is known to have an intermediate morphology and a hybrid genome, and we have recreated its intermediate wing colour and pattern through laboratory crosses between H. melpomene, H. cydno and their F1 hybrids. We then used mate preference experiments to show that the phenotype of H. heurippa reproductively isolates it from both parental species. There is strong assortative mating between all three species, and in H. heurippa the wing pattern and colour elements derived from H. melpomene and H. cydno are both critical for mate recognition by males.


Assuntos
Borboletas/classificação , Borboletas/genética , Especiação Genética , Hibridização Genética , Animais , Borboletas/fisiologia , Colômbia , Cruzamentos Genéticos , Feminino , Masculino , Dados de Sequência Molecular , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia
16.
Genetics ; 171(2): 557-70, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15489522

RESUMO

Heliconius melpomene is a mimetic butterfly that exhibits great geographic variation in color pattern. We present here a genetic linkage map based on analysis of genetic markers in 73 individuals from a single F(2) family, offspring of a cross between H. m. cythera from western Ecuador and H. m. melpomene from French Guiana. A novel "three-step method" is described for the analysis of dominant markers in an F(2) cross, using outbred parental strains and taking advantage of the lack of crossing over in female Lepidoptera. This method is likely to prove useful for future mapping studies in outbred species with crossing over restricted to one sex, such as the Lepidoptera and Drosophila. The resulting linkage map has 21 linkage groups corresponding to the 21 chromosomes of H. melpomene and includes 219 AFLP markers, 23 microsatellites, 19 single-copy nuclear genes, and the color pattern switch genes Yb and Sb. The marker density is high, averaging >1/7 cM. The total map length is 1616 cM and the average chromosome length is 77 cM. The genome size of H. melpomene was estimated to be 292 Mb, giving a relationship of physical-to-map distance of 180 kb/cM. This map forms the basis for future comparative linkage analysis of color pattern evolution in Heliconius.


Assuntos
Borboletas/genética , Mapeamento Cromossômico , Genoma/genética , Pigmentação/genética , Animais , Cruzamentos Genéticos , Primers do DNA , Marcadores Genéticos/genética , Repetições de Microssatélites/genética , Técnicas de Amplificação de Ácido Nucleico , Pigmentação/fisiologia , Polimorfismo de Fragmento de Restrição , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...