Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13941, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886391

RESUMO

The present study focused on evaluating the antibacterial properties, radical scavenging, and photocatalytic activities of Centaurea behen-mediated silver nanoparticles (Cb-AgNPs). The formation of Cb-AgNPs was approved by UV-Vis spectrometry, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. The results showed that the obtained AgNPs have a maximum absorbance peak at 450 nm with spherical morphology and an average size of 13.03 ± 5.8 nm. The catalytic activity of the Cb-AgNPs was investigated using Safranin O (SO) solution as a cationic dye model. The Cb-AgNPs performed well in the removal of SO. The coupled physical adsorption/photocatalysis reaction calculated about 68% and 98% degradation of SO dye under solar irradiation. The Cb-AgNPs inhibited the growth of gram-negative or positive bacteria strains and had excellent DPPH radicals scavenging ability (100% in a concentration of 200 µg/ml) as well as a good effect on reducing coagulation time (at concentrations of 200 and 500 µg/mL reduced clotting time up to 3 min). Considering the fact that green synthesized Cb-AgNPs have antioxidant and antibacterial properties and have a good ability to reduce coagulation time, they can be used in wound dressings. As well as these NPs with good photocatalytic activity can be a suitable option for degrading organic pollutants.


Assuntos
Antibacterianos , Centaurea , Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Folhas de Planta , Prata , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Química Verde/métodos , Centaurea/química , Poluentes Ambientais/química , Hemostáticos/farmacologia , Hemostáticos/química , Testes de Sensibilidade Microbiana
2.
Bioimpacts ; 12(6): 567-588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644549

RESUMO

Introduction: Bacterial infections have always been a major threat to public health and humans' life, and fast detection of bacteria in various samples is significant to provide early and effective treatments. Cell-culture protocols, as well-established methods, involve labor-intensive and complicated preparation steps. For overcoming this drawback, electrochemical methods may provide promising alternative tools for fast and reliable detection of bacterial infections. Methods: Therefore, this review study was done to present an overview of different electrochemical strategy based on recognition elements for detection of bacteria in the studies published during 2015-2020. For this purpose, many references in the field were reviewed, and the review covered several issues, including (a) enzymes, (b) receptors, (c) antimicrobial peptides, (d) lectins, (e) redox-active metabolites, (f) aptamer, (g) bacteriophage, (h) antibody, and (i) molecularly imprinted polymers. Results: Different analytical methods have developed are used to bacteria detection. However, most of these methods are highly time, and cost consuming, requiring trained personnel to perform the analysis. Among of these methods, electrochemical based methods are well accepted powerful tools for the detection of various analytes due to the inherent properties. Electrochemical sensors with different recognition elements can be used to design diagnostic system for bacterial infections. Recent studies have shown that electrochemical assay can provide promising reliable method for detection of bacteria. Conclusion: In general, the field of bacterial detection by electrochemical sensors is continuously growing. It is believed that this field will focus on portable devices for detection of bacteria based on electrochemical methods. Development of these devices requires close collaboration of various disciplines, such as biology, electrochemistry, and biomaterial engineering.

3.
Glob Chall ; 5(4): 2000099, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33854790

RESUMO

Mercury ions are highly toxic at trace levels, and its pollution has posed a significant threat to the environment and public health, where current detection methods mainly require laborious operation and expensive instrumentation. Herein, a simple, cost-effective, instrument-free approach for selective detection of Hg2+ based on a hand-drawn paper-based naked-eye colorimetric device is developed. To develop a hand-drawn paper-based device, a crayon is used to build hydrophobic barriers and a paper puncher is applied to obtain patterns as a sensing zone. A green method for the synthesis of silver nanoparticles (AgNPs) is applied using Achillea Wilhelmsii (Aw) extract. The sensing ability of Aw-AgNPs toward Hg2+ is investigated in both solution-phase and paper substrate loaded with Aw-AgNPs using colorimetric methods. For the paper-based sensor, the quantification of the target relies on the visual readout of a color-changed sensing zone modified with Aw-AgNPs. Under optimal conditions, the color of Aw-AgNPs in aqueous solution and on the coated paper substrate can change from brown to colorless upon addition of target, with a detection limit of 28 × 10-9 m and 0.30 × 10-6 m, respectively. In conclusion, the present study indicates the potential of this hand-drawn eco-friendly paper-based sensor for monitoring of mercury.

4.
Sci Rep ; 10(1): 1762, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020015

RESUMO

In the current study, isoimperatorin, a natural furanocoumarin, is used as a reducing reagent to synthesize isoimperatorin mediated silver nanoparticles (Iso-AgNPs), and photocatalytic and electrocatalytic activities of Iso-AgNPs are evaluated. Iso-AgNPs consisted of spherically shaped particles with a size range of 79-200 nm and showed catalytic activity for the degradation (in high yields) of New Fuchsine (NF), Methylene Blue (MB), Erythrosine B (ER) and 4-chlorophenol (4-CP) under sunlight irradiation. Based on obtained results, Iso-AgNPs exhibited 96.5%, 96.0%, 92%, and 95% degradation rates for MB, NF, ER, and 4-CP, respectively. The electrochemical performance showed that the as-prepared Iso-AgNPs exhibited excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction. It is worth noticing that the Iso-AgNPs were used as electrode materials without any binder. The sensor-based on binder-free Iso-AgNPs showed linearity from 0.1 µM to 4 mM with a detection limit of 0.036 µM for H2O2. This binder-free and straightforward strategy for electrode preparation by silver nanoparticles may provide an alternative technique for the development of other nanomaterials based on isoimperatorin under green conditions. Altogether, the application of isoimpratorin in the synthesis of nano-metallic electro and photocatalysts, especially silver nanoparticles, is a simple, cost-effective and efficient approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...