Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(9): 2764-2777, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35356676

RESUMO

The strength of autocatalytic reactions lies in their ability to provide a powerful means of molecular amplification, which can be very useful for improving the analytical performances of a multitude of analytical and bioanalytical methods. However, one of the major difficulties in designing an efficient autocatalytic amplification system is the requirement for reactants that are both highly reactive and chemically stable in order to avoid limitations imposed by undesirable background amplifications. In the present work, we devised a reaction network based on a redox cross-catalysis principle, in which two catalytic loops activate each other. The first loop, catalyzed by H2O2, involves the oxidative deprotection of a naphthylboronate ester probe into a redox-active naphthohydroquinone, which in turn catalyzes the production of H2O2 by redox cycling in the presence of a reducing enzyme/substrate couple. We present here a set of new molecular probes with improved reactivity and stability, resulting in particularly steep sigmoidal kinetic traces and enhanced discrimination between specific and nonspecific responses. This translates into the sensitive detection of H2O2 down to a few nM in less than 10 minutes or a redox cycling compound such as the 2-amino-3-chloro-1,4-naphthoquinone down to 50 pM in less than 30 minutes. The critical reason leading to these remarkably good performances is the extended stability stemming from the double masking of the naphthohydroquinone core by two boronate groups, a counterintuitive strategy if we consider the need for two equivalents of H2O2 for full deprotection. An in-depth study of the mechanism and dynamics of this complex reaction network is conducted in order to better understand, predict and optimize its functioning. From this investigation, the time response as well as detection limit are found to be highly dependent on pH, nature of the buffer, and concentration of the reducing enzyme.

2.
Chem Commun (Camb) ; 57(86): 11374-11377, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34647564

RESUMO

Here we report a simple autocatalytic organic reaction network based on the redox chemistry of quinones and reactive oxygen species. Autocatalysis arises from the cross-activation between the H2O2-catalyzed deprotection of a pro-benzoquinone arylboronic ester probe and the benzoquinone-catalyzed H2O2 production through redox cyling with ascorbate in an aerated buffered solution.

3.
Chemphyschem ; 22(15): 1611-1621, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34038617

RESUMO

Molecule based signal amplifications relying on an autocatalytic process may represent an ideal strategy for the development of ultrasensitive analytical or bioanalytical assays, the main reason being the exponential nature of the amplification. However, to take full advantage of such amplification rates, high stability of the starting co-reactants is required in order to avoid any undesirable background amplification. Here, on the basis of a simple kinetic model of cross-catalysis including a certain degree of intrinsic instability of co-reactants, we highlight the key parameters governing the analytical response of the system and discuss the analytical performances that are expected from a given kinetic set. In particular, we show how the detection limit is directly related to the relative instability of reactants within each catalytic loop. The model is validated with an experimental dataset and is intended to serve as a guide in the design and optimization of autocatalytic molecular-based amplification systems with improved analytical performances.

4.
ACS Omega ; 5(4): 2015-2026, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039339

RESUMO

The ability to switch on the activity of an enzyme through its spontaneous reconstitution has proven to be a valuable tool in fundamental studies of enzyme structure/reactivity relationships or in the design of artificial signal transduction systems in bioelectronics, synthetic biology, or bioanalytical applications. In particular, those based on the spontaneous reconstitution/activation of the apo-PQQ-dependent soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus were widely developed. However, the reconstitution mechanism of sGDH with its two cofactors, i.e., pyrroloquinoline quinone (PQQ) and Ca2+, remains unknown. The objective here is to elucidate this mechanism by stopped-flow kinetics under single-turnover conditions. The reconstitution of sGDH exhibited biphasic kinetics, characteristic of a square reaction scheme associated with two activation pathways. From a complete kinetic analysis, we were able to fully predict the reconstitution dynamics and also to demonstrate that when PQQ first binds to apo-sGDH, it strongly impedes the access of Ca2+ to its enclosed position at the bottom of the enzyme binding site, thereby greatly slowing down the reconstitution rate of sGDH. This slow calcium insertion may purposely be accelerated by providing more flexibility to the Ca2+ binding loop through the specific mutation of the calcium-coordinating P248 proline residue, reducing thus the kinetic barrier to calcium ion insertion. The dynamic nature of the reconstitution process is also supported by the observation of a clear loop shift and a reorganization of the hydrogen-bonding network and van der Waals interactions observed in both active sites of the apo and holo forms, a structural change modulation that was revealed from the refined X-ray structure of apo-sGDH (PDB: 5MIN).

5.
Chemistry ; 25(31): 7534-7546, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-30809849

RESUMO

Herein, a new molecular autocatalytic reaction scheme based on a H2 O2 -mediated deprotection of a boronate ester probe into a redox cycling compound is described, generating an exponential signal gain in the presence of O2 and a reducing agent or enzyme. For such a purpose, new chemosensing probes built around a naphthoquinone/naphthohydroquinone redox-active core, masked by a self-immolative boronic ester protecting group, were designed. With these probes, typical autocatalytic kinetic traces with characteristic lags and exponential phases were obtained by using either UV/Visible or fluorescence optical detection, or by using electrochemical monitoring. Detection of concentrations as low as 0.5 µm H2 O2 and 0.5 nm of a naphthoquinone derivative were achieved in a relatively short time (<1 h). From kinetic analysis of the two cross-activated catalytic loops associated with the autocatalysis, the key parameters governing the autocatalytic reaction network were determined, indirectly showing that the analytical performances are currently limited by the slow nonspecific self-deprotection of boronate probes. Collectively, the present results demonstrate the potential of this new exponential molecular amplification strategy, which, owing to its generic nature and modularity, is quite promising for coupling to a wide range of bioassays involving H2 O2 or redox cycling compounds, or for use as a new building block in the development of more complex chemical reaction networks.

6.
Chem Commun (Camb) ; 53(6): 1140-1143, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28054050

RESUMO

In this work, we report an affordable, sensitive, fast and user-friendly electroanalytical method for monitoring the binding between unlabeled RNA and small compounds in microliter-size droplets using a redox-probe and disposable miniaturized screen-printed electrochemical cells.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas , RNA/química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Ligantes , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
7.
Anal Chem ; 88(23): 11963-11971, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934108

RESUMO

Nucleic acid aptamers are involved in a broad field of applications ranging from therapeutics to analytics. Deciphering the binding mechanisms between aptamers and small ligands is therefore crucial to improve and optimize existing applications and to develop new ones. Particularly interesting is the enantiospecific binding mechanism involving small molecules with nonprestructured aptamers. One archetypal example is the chiral binding between l-tyrosinamide and its 49-mer aptamer for which neither structural nor mechanistic information is available. In the present work, we have taken advantage of a multiple analytical characterization strategy (i.e., using electroanalytical techniques such as kinetic rotating droplet electrochemistry, fluorescence polarization, isothermal titration calorimetry, and quartz crystal microbalance) for interpreting the nature of binding process. Screening of the binding thermodynamics and kinetics with a wide range of aptamer sequences revealed the lack of symmetry between the two ends of the 23-mer minimal binding sequence, showing an unprecedented influence of the 5' aptamer modification on the bimolecular binding rate constant kon and no significant effect on the dissociation rate constant koff. The results we have obtained lead us to conclude that the enantiospecific binding reaction occurs through an induced-fit mechanism, wherein the ligand promotes a primary nucleation binding step near the 5'-end of the aptamer followed by a directional folding of the aptamer around its target from 5'-end to 3'-end. Functionalization of the 5'-end position by a chemical label, a polydA tail, a protein, or a surface influences the kinetic/thermodynamic constants up to 2 orders of magnitude in the extreme case of a surface immobilized aptamer, while significantly weaker effect is observed for a 3'-end modification. The reason is that steric hindrance must be overcome to nucleate the binding complex in the presence of a modification near the nucleation site.


Assuntos
Aptâmeros de Nucleotídeos/química , Calorimetria , Técnicas Eletroquímicas , Polarização de Fluorescência , Técnicas de Microbalança de Cristal de Quartzo , Bibliotecas de Moléculas Pequenas/química , Sequência de Bases , Sítios de Ligação , Cinética , Ligantes , Termodinâmica
8.
Chemistry ; 20(10): 2953-9, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24519626

RESUMO

A series of redox-labeled L-tyrosinamide (L-Tym) derivatives was prepared and the nature of the functional group and the chain length of the spacer were systematically varied in a step-by-step affinity optimization process of the tracer for the L-Tym aptamer. The choice of the labeling position on L-Tym proved to be crucial for the molecular recognition event, which could be monitored by cyclic voltammetry and is based on the different diffusion rates of free and bound targets in solution. From this screening approach an efficient electroactive tracer emerged. Comparable dissociation constants Kd were obtained for the unlabeled and labeled targets in direct or competitive binding assays. The enantiomeric tracer was prepared and its enantioselective recognition by the corresponding anti-D-Tym aptamer was demonstrated. The access to both enantiomeric tracer molecules opens the door for the development of one-pot determination of the enantiomeric excess when using different labels with well-separated redox potentials for each enantiomer.


Assuntos
Aptâmeros de Nucleotídeos/química , Oligonucleotídeos/química , Tirosina/análogos & derivados , Ligação Competitiva , Difusão , Eletroquímica , Eletroforese Capilar , Oxirredução , Estereoisomerismo , Tirosina/química
9.
Anal Chem ; 86(4): 2257-67, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24476605

RESUMO

A highly sensitive electroanalytical method for determination of PQQ in solution down to subpicomolar concentrations is proposed. It is based on the heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase (PQQ-GDH) through the specific binding of its pyrroloquinoline quinone (PQQ) cofactor to the apoenzyme anchored on an electrode surface. It is shown from kinetics analysis of both the enzyme catalytic responses and enzyme surface-reconstitution process (achieved by cyclic voltammetry under redox-mediated catalysis) that the selected immobilization strategy (i.e., through an avidin/biotin linkage) is well-suited to immobilize a nearly saturated apoenzyme monolayer on the electrode surface with an almost fully preserved PQQ binding properties and catalytic activity. From measurement of the overall rate constants controlling the steady-state catalytic current responses of the surface-reconstituted PQQ-GDH and determination of the PQQ equilibrium binding (Kb = 2.4 × 10(10) M(-1)) and association rate (kon = 2 × 10(6) M(-1) s(-1)) constants with the immobilized apoenzyme, the analytical performances of the method could be rationally evaluated, and the signal amplification for PQQ detection down to the picomolar levels is well-predicted. These performances outperform by several orders of magnitude the direct electrochemical detection of PQQ in solution and by 1 to 2 orders the detection limits previously achieved by UV-vis spectroscopic detection of the homogeneous PQQ-GDH reconstitution.


Assuntos
Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Enzimas Imobilizadas/química , Glucose Desidrogenase/química , Animais , Bovinos , Eletrodos
10.
J Am Chem Soc ; 135(38): 14215-28, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23985016

RESUMO

Here, we demonstrate a new generic, affordable, simple, versatile, sensitive, and easy-to-implement electrochemical kinetic method for monitoring, in real time, the progress of a chemical or biological reaction in a microdrop of a few tens of microliters, with a kinetic time resolution of ca. 1 s. The methodology is based on a fast injection and mixing of a reactant solution (1-10 µL) in a reaction droplet (15-50 µL) rapidly rotated over the surface of a nonmoving working electrode and on the recording of the ensuing transient faradaic current associated with the transformation of one of the components. Rapid rotation of the droplet was ensured mechanically by a rotating rod brought in contact atop the droplet. This simple setup makes it possible to mix reactants efficiently and rotate the droplet at a high spin rate, hence generating a well-defined hydrodynamic steady-state convection layer at the underlying stationary electrode. The features afforded by this new kinetic method were investigated for three different reaction schemes: (i) the chemical oxidative deprotection of a boronic ester by H2O2, (ii) a biomolecular binding recognition between a small target and an aptamer, and (iii) the inhibition of the redox-mediated catalytic cycle of horseradish peroxidase (HRP) by its substrate H2O2. For the small target/aptamer binding reaction, the kinetic and thermodynamic parameters were recovered from rational analysis of the kinetic plots, whereas for the HRP catalytic/inhibition reaction, the experimental amperometric kinetic plots were reproduced from numerical simulations. From the best fits of simulations to the experimental data, the kinetics rate constants primarily associated with the inactivation/reactivation pathways of the enzyme were retrieved. The ability to perform kinetics in microliter-size samples makes this methodology particularly attractive for reactions involving low-abundance or expensive reagents.

12.
Analyst ; 137(12): 2827-33, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22576232

RESUMO

We report a two-channel microelectrochemical sensor that communicates between separate sensing and reporting microchannels via one or more bipolar electrodes (BPEs). Depending on the contents of each microchannel and the voltage applied across the BPE, faradaic reactions may be activated simultaneously in both channels. As presently configured, one end of the BPE is designated as the sensing pole and the other as the reporting pole. When the sensing pole is activated by a target, electrogenerated chemiluminescence (ECL) is emitted at the reporting pole. Compared to previously reported single-channel BPE sensors, the key advantage of the multichannel architecture reported here is physical separation of the ECL reporting cocktail and the solution containing the target. This prevents chemical interference between the two channels.

13.
Anal Chem ; 84(12): 5415-20, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22624981

RESUMO

A new electrochemical methodology is reported for monitoring in homogeneous solution the enantiospecific binding of a small chiral analyte to an aptamer. The principle relies on the difference of diffusion rates between the targeted molecule and the aptamer/target complex, and thus on the ability to more easily electrochemically detect the former over the latter in a homogeneous solution. This electrochemical detection strategy is significant because, in contrast to the common laborious and time-consuming heterogeneous binding approaches, it is based on a simple and fast homogeneous binding assay which does not call for an aptamer conformational change upon ligand binding. The methodology is here exemplified with the specific chiral recognition of trace amounts of l- or d-tyrosinamide by a 49-mer d- or l-deoxyribooligonucleotide receptor. Detection as low as 0.1% of the minor enantiomer in a nonracemic mixture can be achieved in a very short analysis time (<1 min). The assay finally combines numerous attractive features including simplicity, rapidity, low cost, flexibility, low volume samples (few microliters), and homogeneous format.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Eletroquímica/métodos , Tirosina/análogos & derivados , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Modelos Moleculares , Conformação de Ácido Nucleico , Estereoisomerismo , Especificidade por Substrato , Fatores de Tempo , Tirosina/química , Tirosina/metabolismo
14.
Analyst ; 136(18): 3635-42, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21792448

RESUMO

We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.


Assuntos
DNA Helicases/metabolismo , DNA/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas de Amplificação de Ácido Nucleico , DNA/química , Sondas de DNA/química , Sondas de DNA/metabolismo , Corantes Fluorescentes/química , Substâncias Intercalantes/química , Oxirredução , Temperatura de Transição
15.
J Am Chem Soc ; 133(32): 12801-9, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21780841

RESUMO

Thanks to its insensitivity to dioxygen and to its good catalytic reactivity, and in spite of its poor substrate selectivity, quinoprotein glucose dehydrogenase (PQQ-GDH) plays a prominent role among the redox enzymes that can be used for analytical purposes, such as glucose detection, enzyme-based bioaffinity assays, and the design of biofuel cells. A detailed kinetic analysis of the electrochemical catalytic responses, leading to an unambiguous characterization of each individual steps, seems a priori intractable in view of the interference, on top of the usual ping-pong mechanism, of substrate inhibition and of cooperativity effects between the two identical subunits of the enzyme. Based on simplifications suggested by extended knowledge previously acquired by standard homogeneous kinetics, it is shown that analysis of the catalytic responses obtained by means of electrochemical nondestructive techniques, such as cyclic voltammetry, with ferrocene methanol as a mediator, does allow a full characterization of all individual steps of the catalytic reaction, including substrate inhibition and cooperativity and, thus, allows to decipher the reason that makes the enzyme more efficient when the neighboring subunit is filled with a glucose molecule. As a first practical illustration of this electrochemical approach, comparison of the native enzyme responses with those of a mutant (in which the asparagine amino acid in position 428 has been replaced by a cysteine residue) allowed identification of the elementary steps that makes the mutant type more efficient than the wild type when cooperativity between the two subunits takes place, which is observed at large mediator and substrate concentrations. A route is thus opened to structure-reactivity relationships and therefore to mutagenesis strategies aiming at better performances in terms of catalytic responses and/or substrate selectivity.


Assuntos
Escherichia coli/enzimologia , Glucose Desidrogenase/metabolismo , Técnicas Eletroquímicas , Escherichia coli/genética , Glucose/metabolismo , Glucose Desidrogenase/genética , Oxirredução , Mutação Puntual , Especificidade por Substrato
16.
J Am Chem Soc ; 132(43): 15404-9, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20942419

RESUMO

Here we report a simple design philosophy, based on the principles of bipolar electrochemistry, for the operation of microelectrochemical integrated circuits. The inputs for these systems are simple voltage sources, but because they do not require much power they could be activated by chemical or biological reactions. Device output is an optical signal arising from electrogenerated chemiluminescence. Individual microelectrochemical logic gates are described first, and then multiple logic circuits are integrated into a single microfluidic channel to yield an integrated circuit that can perform parallel logic functions. AND, OR, NOR, and NAND gates are described. Eventually, systems such as those described here could provide on-chip data processing functions for lab-on-a-chip devices.

17.
Anal Chem ; 82(21): 8766-74, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20815405

RESUMO

Over the past decade, bipolar electrochemistry has emerged from relative obscurity to provide a promising new means for integrating electrochemistry into lab-on-a-chip systems. This article describes the fundamental operating principles of bipolar electrodes, as well as several interesting applications.

18.
J Am Chem Soc ; 132(27): 9228-9, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20557051

RESUMO

Here we report a new type of sensing platform that is based on electrodissolution of a metallic bipolar electrode (BPE). When the target DNA binds to the capture probe at the cathodic pole of the BPE, it triggers the oxidation and dissolution of Ag metal present at the anodic pole. The loss of Ag is easily detectable with the naked eye or a magnifying glass and provides a permanent record of the electrochemical history of the electrode. More importantly, the decrease in the length of the BPE can be directly correlated to the number of electrons passing through the BPE and hence to the sensing reaction at the cathode.

19.
Anal Chem ; 82(12): 5317-22, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20507130

RESUMO

In this paper, we report a new electroanalytical technique we call snapshot voltammetry. This method combines the properties of bipolar electrodes with electrogenerated chemiluminescence (ECL) to provide a means for recording optical voltammograms in a single micrograph. In essence, the information in a snapshot voltammogram is contained in the spatial domain rather than in the time domain, which is the case for conventional voltammetry. The use of a triangle-shaped bipolar electrode stabilizes the interfacial potential difference along its length. Basic electrochemical parameters extracted from snapshot voltammograms are in good agreement with those obtained by conventional voltammetry. Although not explicitly demonstrated in this paper, this method offers the possibility of using arrays of bipolar electrodes to obtain numerous snapshot voltammograms simultaneously.

20.
J Am Chem Soc ; 131(24): 8364-5, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19530725

RESUMO

We report a microelectrochemical array composed of 1000 individual bipolar electrodes that are controlled with just two driving electrodes and a simple power supply. The system is configured so that faradaic processes occurring at the cathode end of each electrode are correlated to light emission via electrogenerated chemiluminescence (ECL) at the anode end. This makes it possible to read out the state of each electrode simultaneously. The significant advance is that the electrode array is fabricated on a glass microscope slide and is operated in a simple electrochemical cell. This eliminates the need for microfluidic channels, provides a fabrication route to arbitrarily large electrode arrays, and will make it possible to place sensing chemistries onto each electrode using a robotic spotter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...