Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(17): 13012-13019, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38529592

RESUMO

The behaviour of multiple fluid phases within a porous medium is hard to predict. NMR measurements offer an excellent tool to probe such systems in a fast and non-invasive way. Such systems can be relevant to hydrocarbon recovery, catalysis, and CO2 and H2 geo-storage, among others. Since electrolyte solutions are always present in subsurface reservoirs, understanding their behaviour within porous media is highly important. In this study, we use NMR relaxation and diffusion methods to investigate the diffusion coefficients and strength of interactions between alumina surfaces and brines at various NaCl concentrations, focusing on the effect of salt concentration on transport and interactions within the porous structure. Furthermore, we study the spontaneous displacement of dodecane, a model hydrocarbon, from the same alumina pellets using the same brine solutions. Results show that brines of lower salinity consistently displace more dodecane in total, after soaking dodecane-saturated pellets in a brine solution for several days. This indicates that increased salt concentrations can reduce wettability towards the aqueous phase in simple metal oxide surfaces and highlights the capabilities of NMR to efficiently study such systems.

2.
Chempluschem ; 89(2): e202300411, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831757

RESUMO

Photoreforming of lignocellulose biomass is widely recognised as a challenging but key technology for producing value-added chemicals and renewable hydrogen (H2 ). In this study, H2 production from photoreforming of organosolv lignin in a neutral aqueous solution was studied over a 0.1 wt % Pt/TiO2 (P25) catalyst with ultraviolet A (UVA) light. The H2 production from the system employing the lignin (~4.8 µmol gcat -1 h-1 ) was comparable to that using hydroxylated/methoxylated aromatic model compounds (i. e., guaiacol and phenol, 4.8-6.6 µmol gcat -1 h-1 ), being significantly lower than that from photoreforming of cellulose (~62.8 µmol gcat -1 h-1 ). Photoreforming of phenol and reaction intermediates catechol, hydroquinone and benzoquinone were studied to probe the mechanism of phenol oxidation under anaerobic photoreforming conditions with strong adsorption and electron transfer reactions lowering H2 production from the intermediates relative to that from phenol. The issues associated with catalyst poisoning and low photoreforming activity of lignins demonstrated in this paper have been mitigated by implementing a process by which the catalyst was cycled through anaerobic and aerobic conditions. This strategy enabled the periodic regeneration of the photocatalyst resulting in a threefold enhancement in H2 production from the photoreforming of lignin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...