Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 601-602: 1437-1448, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605862

RESUMO

Large volumes of sludge are produced from onsite sanitation systems in densely populated areas (e.g. slums and emergency settlements) and wastewater treatment facilities that contain high amounts of pathogens. There is a need for technological options which can effectively treat the rapidly accumulating sludge under these conditions. This study explored a pilot-scale microwave (MW) based reactor as a possible alternative for rapid sludge treatment. The reactor performance was examined by conducting a series of batch tests using centrifuged waste activated sludge (C-WAS), non-centrifuged waste activated sludge (WAS), faecal sludge (FS), and septic tank sludge (SS). Four kilograms of each sludge type were subjected to MW treatment at a power of 3.4kW for various time durations ranging from 30 to 240min. During the treatment the temperature change, bacteria inactivation (E. coli, coliforms, Staphylococcus aureus, and enterococcus faecalis) and sludge weight/volume reduction were measured. Calorific values (CV) of the dried sludge and the nutrient content (total nitrogen (TN) and total phosphorus (TP)) in both the dried sludge and the condensate were also determined. It was found that MW treatment was successful to achieve a complete bacterial inactivation and a sludge weight/volume reduction above 60%. Besides, the dried sludge and condensate had high energy (≥16MJ/kg) and nutrient contents (solids; TN≥28mg/g TS and TP≥15mg/g TS; condensate TN≥49mg/L TS and TP≥0.2mg/L), having the potential to be used as biofuel, soil conditioner, fertilizer, etc. The MW reactor can be applied for the rapid treatment of sludge in areas such as slums and emergency settlements.

2.
J Environ Manage ; 184(Pt 3): 575-584, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27784577

RESUMO

Toilet facilities in highly dense areas such as the slum and emergency settlements fill up rapidly; thus, requiring frequent emptying. Consequently, big quantities of fresh faecal sludge (FS) containing large amounts of pathogens are generated. Fast and efficient FS treatment technologies are therefore required for safe treatment and disposal of the FS in such conditions. This study explores the applicability of a microwave (MW) technology for the treatment of fresh FS obtained from urine-diverting dry toilets placed in slum settlements in Nairobi, Kenya. Two sample fractions containing 100 g and 200 g of FS were exposed to MW irradiation at three input MW power levels of 465, 1085 and 1550 W at different exposure times ranging from 0.5 to 14 min. The variation in the FS temperature, pathogen reduction via the destruction of E. coli and Ascaris lumbricoides eggs, and vol/wt reduction were measured during the MW treatment. It was demonstrated that the MW technology can rapidly and efficiently achieve complete reduction of E. coli and Ascaris lumbricoides eggs, and over 70% vol/wt reduction in the fresh FS. Furthermore, the successful evaluation of the MW technology under real field conditions demonstrated that MW irradiation can be applied for rapid treatment of fresh FS in situations such as urban slum and emergency conditions.


Assuntos
Micro-Ondas , Esgotos , Banheiros , Gerenciamento de Resíduos/métodos , Animais , Ascaris lumbricoides/efeitos da radiação , Escherichia coli/efeitos da radiação , Fezes/microbiologia , Fezes/parasitologia , Humanos , Quênia , Áreas de Pobreza , Esgotos/microbiologia , Esgotos/parasitologia , Temperatura
3.
Sci Total Environ ; 548-549: 72-81, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26799809

RESUMO

A laboratory-scale microwave (MW) unit was applied to treat fresh blackwater sludge that represented fecal sludge (FS) produced at heavily used toilet facilities. The sludge was exposed to MW irradiation at different power levels and for various durations. Variables such as sludge volume and pathogen reduction were observed. The results demonstrated that the MW is a rapid and efficient technology that can reduce the sludge volume by over 70% in these experimental conditions. The concentration of bacterial pathogenic indicator E. coli also decreased to below the analytical detection levels. Furthermore, the results indicated that the MW operational conditions including radiation power and contact time can be varied to achieve the desired sludge volume and pathogen reduction. MW technology can be further explored for the potential scaling-up as an option for rapid treatment of FS from intensively used sanitation facilities such as in emergency situations.


Assuntos
Reatores Biológicos/microbiologia , Micro-Ondas , Eliminação de Resíduos Líquidos/métodos , Escherichia coli/efeitos da radiação , Esgotos/microbiologia , Águas Residuárias/microbiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...