Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(14): 25410-25417, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237072

RESUMO

We propose the concept and experimentally verify the operation of terahertz quantum cascade laser sources based on intra-cavity Cherenkov difference-frequency generation on a silicon substrate with the current injection layer configured as a metal wire grid. Such a current injector configuration enables high transmission of TM-polarized terahertz radiation into the silicon substrate while simultaneously providing a low-resistivity metal contact for current injection.

2.
Nat Commun ; 13(1): 4014, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851271

RESUMO

Remote epitaxy is a promising approach for synthesizing exfoliatable crystalline membranes and enabling epitaxy of materials with large lattice mismatch. However, the atomic scale mechanisms for remote epitaxy remain unclear. Here we experimentally demonstrate that GaSb films grow on graphene-terminated GaSb (001) via a seeded lateral epitaxy mechanism, in which pinhole defects in the graphene serve as selective nucleation sites, followed by lateral epitaxy and coalescence into a continuous film. Remote interactions are not necessary in order to explain the growth. Importantly, the small size of the pinholes permits exfoliation of continuous, free-standing GaSb membranes. Due to the chemical similarity between GaSb and other III-V materials, we anticipate this mechanism to apply more generally to other materials. By combining molecular beam epitaxy with in-situ electron diffraction and photoemission, plus ex-situ atomic force microscopy and Raman spectroscopy, we track the graphene defect generation and GaSb growth evolution a few monolayers at a time. Our results show that the controlled introduction of nanoscale openings in graphene provides an alternative route towards tuning the growth and properties of 3D epitaxial films and membranes on 2D material masks.

3.
Opt Express ; 29(2): 2819-2826, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726471

RESUMO

Measurements of beam stability for mid-infrared (IR)-emitting quantum cascade lasers (QCLs) are important for applications that require the beam to travel through air to remote targets, such as free-space communication links. We report beam-quality measurement results of narrow-ridge, 4.6 µm-emitting buried-heterostructure (BH) QCLs fabricated using ICP etching and HVPE regrowth. Beam-quality measurements under QCW operation exhibit M2 < 1.2 up to 1 W for ∼5 µm-wide ridges. 5 µm-wide devices display some small degree of centroid motion with increasing output power (< 0.125 mrad), which corresponds to a targeting error of ∼1.25 cm over a distance of 100 m.

4.
Opt Express ; 24(21): 24483-24494, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828176

RESUMO

8.4 µm-emitting quantum cascade lasers (QCLs) have been designed to have, right from threshold, both carrier-leakage suppression and miniband-like carrier extraction. The slope-efficiency characteristic temperature T1, the signature of carrier-leakage suppression, is found to be 665 K. Resonant-tunneling carrier extraction from both the lower laser level (ll) and the level below it, coupled with highly effective ll-depopulation provide a very short ll lifetime (~0.12 ps). As a result the laser-transition differential efficiency reaches 89%, and the internal differential efficiency ηid, derived from a variable mirror-loss study, is found to be 86%, in good agreement with theory. A study of 8.8 µm-emitting QCLs also provides an ηid value of 86%. A corrected equation for the external differential efficiency is derived which leads to a fundamental limit of ~90% for the ηid values of mid-infrared QCLs. In turn, the fundamental wallplug-efficiency limits become ~34% higher than previously predicted.

5.
Nano Lett ; 13(12): 5979-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274630

RESUMO

Dense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (~10 nm) SiNx layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF4 reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ~ 20 nm and micrometer-scale lengths were achieved with a density of ~ 5 × 10(10) cm(2). The nanowire structures were characterized by scanning electron microscopy and transmission electron microscopy, which indicate twin defects in a primary zincblende crystal structure and the absence of threading dislocation within the imaged regions.


Assuntos
Arsenicais/química , Índio/química , Nanofios/química , Polímeros/química , Cristalização , Gálio/química , Metacrilatos/química , Microscopia Eletrônica de Transmissão , Poliestirenos/química
6.
Annu Rev Chem Biomol Eng ; 4: 187-209, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23540290

RESUMO

There is an increasing technological need for a wider array of semiconducting materials that will allow greater control over the physical and electronic structure within multilayer heterostructures. This need has led to an expansion in the range of semiconducting alloys explored and used in new applications. These alloy semiconductors are often complicated by a limited range of miscibility. The current research has focused on the properties, stability, and detailed chemistry required to realize these materials. The use of synthetic conditions that permit the growth of these alloys to be dominated by kinetic rather than mass-transport considerations has allowed many of these nominally unstable materials to be grown and used in device structures. These materials have found important applications within optical communications as emitters and detectors and in solid-state lighting.


Assuntos
Ligas/química , Óptica e Fotônica , Semicondutores , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos
7.
Nanoscale Res Lett ; 6(1): 342, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21711862

RESUMO

Highly uniform InGaN-based quantum dots (QDs) grown on a nanopatterned dielectric layer defined by self-assembled diblock copolymer were performed by metal-organic chemical vapor deposition. The cylindrical-shaped nanopatterns were created on SiNx layers deposited on a GaN template, which provided the nanopatterning for the epitaxy of ultra-high density QD with uniform size and distribution. Scanning electron microscopy and atomic force microscopy measurements were conducted to investigate the QDs morphology. The InGaN/GaN QDs with density up to 8 × 1010 cm-2 are realized, which represents ultra-high dot density for highly uniform and well-controlled, nitride-based QDs, with QD diameter of approximately 22-25 nm. The photoluminescence (PL) studies indicated the importance of NH3 annealing and GaN spacer layer growth for improving the PL intensity of the SiNx-treated GaN surface, to achieve high optical-quality QDs applicable for photonics devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...